Menu Close

Category: Permutation and Combination

Determine-the-term-independent-of-x-in-the-expansion-x-1-x-2-3-x-1-3-1-x-1-x-x-1-2-10-

Question Number 137943 by john_santu last updated on 08/Apr/21 $${Determine}\:{the}\:{term}\:{independent} \\ $$$${of}\:{x}\:{in}\:{the}\:{expansion}\: \\ $$$$\:\:\:\:\left(\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{1}}\:−\frac{{x}−\mathrm{1}}{{x}−{x}^{\mathrm{1}/\mathrm{2}} }\:\right)^{\mathrm{10}} \:. \\ $$ Answered by EDWIN88 last updated…

Evaluate-10-12-14-16-18-20-into-factorial-form-

Question Number 5989 by sanusihammed last updated on 08/Jun/16 $${Evaluate}\:\:\:\mathrm{10}\:×\mathrm{12}\:×\:\mathrm{14}\:×\:\mathrm{16}\:×\:\mathrm{18}\:×\:\mathrm{20}\:\:{into}\:{factorial}\:{form} \\ $$ Answered by prakash jain last updated on 08/Jun/16 $$\mathrm{10}×\mathrm{12}×\mathrm{14}×\mathrm{16}×\mathrm{18}×\mathrm{20} \\ $$$$=\mathrm{2}\left(\mathrm{5}×\mathrm{6}×\mathrm{7}×\mathrm{8}×\mathrm{9}×\mathrm{10}\right)=\frac{\mathrm{2}!\mathrm{10}!}{\mathrm{4}!} \\ $$…

Given-a-10-digit-number-X-1345789026-How-many-10-digit-number-that-can-be-made-using-every-digit-from-X-with-condition-If-a-number-n-is-located-in-k-th-position-of-X-then-the-new-created-numb

Question Number 137035 by mr W last updated on 29/Mar/21 $$\mathrm{Given}\:\mathrm{a}\:\mathrm{10}−\mathrm{digit}\:\mathrm{number}\:{X}\:=\:\mathrm{1345789026} \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{10}−\mathrm{digit}\:\mathrm{number}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made} \\ $$$$\mathrm{using}\:\mathrm{every}\:\mathrm{digit}\:\mathrm{from}\:{X},\:\mathrm{with}\:\mathrm{condition}: \\ $$$$\mathrm{If}\:\mathrm{a}\:\mathrm{number}\:{n}\:\:\mathrm{is}\:\mathrm{located}\:\mathrm{in}\:{k}^{{th}} \:\mathrm{position}\:\mathrm{of}\:{X},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{new}\:\mathrm{created}\:\mathrm{number}\:\mathrm{must}\:\mathrm{not}\:\mathrm{contain} \\ $$$$\mathrm{number}\:{n}\:\mathrm{in}\:{k}^{{th}} \:\mathrm{position} \\ $$$$…

Mr-A-wants-to-deliver-7-letters-to-his-7-friends-so-that-each-gets-1-letter-All-of-the-letters-are-written-of-the-addresses-of-his-7-friends-Find-the-probbility-that-3-of-his-friends-receive-the-co

Question Number 136448 by adhigenz last updated on 22/Mar/21 $$\mathrm{Mr}.\mathrm{A}\:\mathrm{wants}\:\mathrm{to}\:\mathrm{deliver}\:\mathrm{7}\:\mathrm{letters}\:\mathrm{to}\:\mathrm{his}\:\mathrm{7}\:\mathrm{friends}\:\mathrm{so}\:\mathrm{that}\:\mathrm{each}\:\mathrm{gets}\:\mathrm{1}\:\mathrm{letter}. \\ $$$$\mathrm{All}\:\mathrm{of}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{are}\:\mathrm{written}\:\mathrm{of}\:\mathrm{the}\:\mathrm{addresses}\:\mathrm{of}\:\mathrm{his}\:\mathrm{7}\:\mathrm{friends}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{probbility}\:\mathrm{that}, \\ $$$$\mathrm{3}\:\mathrm{of}\:\mathrm{his}\:\mathrm{friends}\:\mathrm{receive}\:\mathrm{the}\:\mathrm{correct}\:\mathrm{letters}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{4}\:\mathrm{receive}\:\mathrm{the}\:\mathrm{wrong}\:\mathrm{ones}. \\ $$ Answered by mr W last updated on 22/Mar/21 $${p}=\frac{{P}_{\mathrm{3}}…

Question-136417

Question Number 136417 by I want to learn more last updated on 21/Mar/21 Answered by EDWIN88 last updated on 22/Mar/21 $$\mathrm{even}\:\mathrm{number}\:=\:\left\{\mathrm{2},\mathrm{4}\right\}\:,\:\mathrm{odd}\:\mathrm{number}=\left\{\mathrm{1},\mathrm{3},\mathrm{5}\right\} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}\:\mathrm{on}\:\mathrm{two}\:\mathrm{balls} \\ $$$$\mathrm{have}\:\mathrm{probabability}\:=\:\frac{\mathrm{1}+\mathrm{3}}{\mathrm{C}_{\mathrm{2}}…