Menu Close

Category: Relation and Functions

Prove-that-n-2-e-2n-1-1-2n-2n-1-

Question Number 224233 by Jgrads last updated on 27/Aug/25 $$\mathrm{Prove}\:\mathrm{that}\:\forall\mathrm{n}\geqslant\mathrm{2} \\ $$$$\mathrm{e}^{\mathrm{2n}−\mathrm{1}} −\mathrm{1}\:\geqslant\:\mathrm{2n}\left(\mathrm{2n}−\mathrm{1}\right) \\ $$ Answered by fkwow344 last updated on 27/Aug/25 $$\mathrm{Let}'\mathrm{s}\:{f}\left({x}\right)={e}^{\mathrm{2}{x}−\mathrm{1}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}…

Question-221413

Question Number 221413 by BHOOPENDRA last updated on 04/Jun/25 Answered by mr W last updated on 05/Jun/25 $${x}=\mathrm{4}\:\mathrm{cos}\:\theta \\ $$$${y}=\mathrm{2}\:\mathrm{sin}\:\theta \\ $$$${x}+{y}=\mathrm{2}\left(\mathrm{2}\:\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)=\mathrm{2}\sqrt{\mathrm{5}}\:\mathrm{sin}\:\left(\theta+\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\right) \\ $$$$\left({x}+{y}\right)_{{min}}…

f-x-x-x-1-f-f-f-f-x-

Question Number 221154 by gregori last updated on 25/May/25 $$\:{f}\left({x}\right)=\:\frac{{x}}{\mid\:{x}\:\mid\:+\:\mathrm{1}} \\ $$$$\:\:{f}\left({f}\left({f}\left({f}\left({x}\right)\right)\right)\right)\:=? \\ $$ Commented by Frix last updated on 25/May/25 $$\frac{{x}}{\mathrm{4}\mid{x}\mid+\mathrm{1}} \\ $$$${f}_{\mathrm{1}} \left({x}\right)=\frac{{x}}{\mid{x}\mid+\mathrm{1}}…

f-x-1-2-x-1-3-x-1-4-x-1-4000-x-f-2-f-3-f-4-

Question Number 221153 by gregori last updated on 25/May/25 $$\:\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{{x}} }\:+\:\frac{\mathrm{1}}{\mathrm{4}^{{x}} }\:+\:…\:+\frac{\mathrm{1}}{\mathrm{4000}^{{x}} } \\ $$$$\:\:{f}\left(\mathrm{2}\right)\:+\:{f}\left(\mathrm{3}\right)\:+\:{f}\left(\mathrm{4}\right)+\:…\:=? \\ $$ Commented by Frix last updated on 25/May/25…

Question-219733

Question Number 219733 by Spillover last updated on 01/May/25 Answered by SdC355 last updated on 01/May/25 $$\mid\mathrm{g}\left({x}\right)−\mathrm{2}\mid\leq\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$−\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\leq\mathrm{g}\left({x}\right)\leq\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}−\mathrm{3}\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\leq\underset{{x}\rightarrow\mathrm{1}}…