Menu Close

Category: Trigonometry

If-4sinx-cosy-2sinx-2cosy-1-0-where-x-y-0-2pie-Find-largest-possible-value-of-the-sum-x-y-

Question Number 29491 by math solver last updated on 09/Feb/18 $${If}\:\mathrm{4}{sinx}.{cosy}+\mathrm{2}{sinx}+\mathrm{2}{cosy}+\mathrm{1}=\mathrm{0} \\ $$$${where}\:{x},{y}\:\in\:\left[\mathrm{0},\mathrm{2}{pie}\right].\:{Find}\:{largest}\: \\ $$$${possible}\:{value}\:{of}\:{the}\:{sum}\:\left({x}+{y}\right). \\ $$ Answered by ajfour last updated on 09/Feb/18 $$\left(\mathrm{1}+\mathrm{2sin}\:{x}\right)\left(\mathrm{1}+\mathrm{2cos}\:{y}\right)=\mathrm{0}…

the-number-of-ordered-pairs-x-y-of-real-numbers-satisfying-4x-2-4x-2-sin-2-y-and-x-2-y-2-3-is-

Question Number 29478 by math solver last updated on 09/Feb/18 $${the}\:{number}\:{of}\:{ordered}\:{pairs}\:\left({x},{y}\right) \\ $$$${of}\:{real}\:{numbers}\:{satisfying}\: \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{2}={sin}^{\mathrm{2}} {y} \\ $$$${and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\:\mathrm{3}\:{is}\:? \\ $$ Answered by…

Show-that-tan-58-tan-32-1-

Question Number 160411 by nadovic last updated on 29/Nov/21 $$\:\:\mathrm{Show}\:\mathrm{that}\:\:\mathrm{tan}\:\mathrm{58}°\mathrm{tan}\:\mathrm{32}°\:=\:\mathrm{1} \\ $$ Answered by TheSupreme last updated on 29/Nov/21 $${tan}\left(\alpha\right){tan}\left(\frac{\pi}{\mathrm{2}}−\alpha\right)={tan}\left(\alpha\right){cotan}\left(\alpha\right)=\mathrm{1} \\ $$$$ \\ $$ Terms…

Question-29249

Question Number 29249 by ajfour last updated on 05/Feb/18 Commented by ajfour last updated on 05/Feb/18 $${Find}\:{side}\:{lengths}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}\:\:{of}\:\bigtriangleup{ABC} \\ $$$${in}\:{terms}\:{of}\:\boldsymbol{{r}}_{\mathrm{1}} ,\:\boldsymbol{{r}}_{\mathrm{2}} ,\:{and}\:\boldsymbol{{r}}_{\mathrm{3}} . \\ $$$${We}\:{may}\:{call}\:{r}_{\mathrm{1}} \:{as}\:\boldsymbol{{p}},\:…

find-cos-5-interms-of-cos-then-find-the-value-of-cos-pi-10-

Question Number 29173 by abdo imad last updated on 04/Feb/18 $${find}\:{cos}\left(\mathrm{5}\alpha\right)\:{interms}\:{of}\:{cos}\alpha\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$${cos}\left(\frac{\pi}{\mathrm{10}}\right). \\ $$ Answered by ajfour last updated on 05/Feb/18 $$\mathrm{cos}\:\mathrm{5}\alpha\:=\mathrm{cos}\:\mathrm{3}\alpha\:\mathrm{cos}\:\mathrm{2}\alpha−\mathrm{sin}\:\mathrm{3}\alpha\:\mathrm{sin}\:\mathrm{2}\alpha \\ $$$$=\left(\mathrm{4cos}\:^{\mathrm{3}}…