Menu Close

Category: Trigonometry

Question-18841

Question Number 18841 by mondodotto@gmail.com last updated on 30/Jul/17 Answered by Tinkutara last updated on 31/Jul/17 $$\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{cos}\:\mathrm{8}\theta\right)}}} \\ $$$$=\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{cos}\:\mathrm{4}\theta\right)}}\:=\:\sqrt{\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{cos}\:\mathrm{2}\theta\right)} \\ $$$$=\:\mathrm{2}\:\mathrm{cos}\:\theta \\ $$ Terms of…

If-A-B-C-are-the-angles-of-a-triangle-then-2sin-A-2-cosec-B-2-sin-C-2-sinAcot-B-2-cos-A-is-1-Independent-of-A-B-C-2-Function-of-A-B-C-3-Function-of-A-B-4-Function-of-B-C-

Question Number 18797 by Tinkutara last updated on 29/Jul/17 $$\mathrm{If}\:{A},\:{B},\:{C}\:\mathrm{are}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}, \\ $$$$\mathrm{then}\:\mathrm{2sin}\frac{{A}}{\mathrm{2}}\mathrm{cosec}\frac{{B}}{\mathrm{2}}\mathrm{sin}\frac{{C}}{\mathrm{2}}\:−\:\mathrm{sin}{A}\mathrm{cot}\frac{{B}}{\mathrm{2}} \\ $$$$−\:\mathrm{cos}\:{A}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Independent}\:\mathrm{of}\:{A},\:{B},\:{C} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Function}\:\mathrm{of}\:{A},\:{B},\:{C} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Function}\:\mathrm{of}\:{A},\:{B} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Function}\:\mathrm{of}\:{B},\:{C} \\ $$ Answered…

The-value-of-cot16-cot44-cot44-cot76-cot76-cot16-is-

Question Number 18742 by Tinkutara last updated on 31/Jul/17 $$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{cot16}°\mathrm{cot44}°\:+\:\mathrm{cot44}°\mathrm{cot76}° \\ $$$$−\:\mathrm{cot76}°\mathrm{cot16}°\:\mathrm{is} \\ $$ Answered by Tinkutara last updated on 31/Jul/17 $$\frac{\mathrm{3}\:+\:\mathrm{cot}\:\mathrm{76}°\:\mathrm{cot}\:\mathrm{16}°}{\mathrm{cot}\:\mathrm{76}°\:+\:\mathrm{cot}\:\mathrm{16}°} \\ $$$$=\:\frac{\mathrm{3}\:\mathrm{sin}\:\mathrm{76}°\:\mathrm{sin}\:\mathrm{16}°\:+\:\mathrm{cos}\:\mathrm{76}°\:\mathrm{cos}\:\mathrm{16}°}{\mathrm{sin}\:\left(\mathrm{76}°\:+\:\mathrm{16}°\right)} \\…

Question-18723

Question Number 18723 by mondodotto@gmail.com last updated on 28/Jul/17 Answered by Tinkutara last updated on 29/Jul/17 $$\mathrm{2sin2}\theta\:+\:\mathrm{15cos2}\theta\:=\:\mathrm{10} \\ $$$$\frac{\mathrm{2sin2}\theta}{\:\sqrt{\mathrm{229}}}\:+\:\frac{\mathrm{15cos2}\theta}{\:\sqrt{\mathrm{229}}}\:=\:\frac{\mathrm{10}}{\:\sqrt{\mathrm{229}}} \\ $$$$\mathrm{cos}\left(\mathrm{2}\theta\:−\:\alpha\right)\:=\:\frac{\mathrm{10}}{\:\sqrt{\mathrm{229}}}\:,\:\mathrm{where}\:\alpha\:=\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{15}}{\:\sqrt{\mathrm{229}}}\right) \\ $$$$\theta\:=\:{n}\pi\:\pm\:\frac{\mathrm{5}}{\:\sqrt{\mathrm{229}}}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{15}}{\:\sqrt{\mathrm{229}}}\right)…

Let-ABC-and-ABC-be-two-non-congruent-triangles-with-sides-AB-4-AC-AC-2-2-and-angle-B-30-The-absolute-value-of-the-difference-between-the-areas-of-these-triangles-is-

Question Number 18721 by Tinkutara last updated on 28/Jul/17 $$\mathrm{Let}\:{ABC}\:\mathrm{and}\:{ABC}'\:\mathrm{be}\:\mathrm{two}\:\mathrm{non}- \\ $$$$\mathrm{congruent}\:\mathrm{triangles}\:\mathrm{with}\:\mathrm{sides}\:{AB}\:=\:\mathrm{4}, \\ $$$${AC}\:=\:{AC}'\:=\:\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{and}\:\mathrm{angle}\:{B}\:=\:\mathrm{30}°. \\ $$$$\mathrm{The}\:\mathrm{absolute}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{difference} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{these}\:\mathrm{triangles}\:\mathrm{is} \\ $$ Answered by ajfour last updated…

If-cos-2-x-1-cos-2-x-2-cos-2-x-3-cos-2-x-4-cos-2-x-5-5-then-sin-x-1-2sin-x-2-3sin-x-3-4sin-x-4-5sin-x-5-is-less-than-or-equal-to-

Question Number 18719 by Tinkutara last updated on 28/Jul/17 $$\mathrm{If}\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{1}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{2}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{3}} \:+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{4}} \\ $$$$+\:\mathrm{cos}^{\mathrm{2}} \:{x}_{\mathrm{5}} \:=\:\mathrm{5},\:\mathrm{then}\:\mathrm{sin}\:{x}_{\mathrm{1}} \:+\:\mathrm{2sin}\:{x}_{\mathrm{2}} \:+ \\ $$$$\mathrm{3sin}\:{x}_{\mathrm{3}}…

if-n-tan-cos-2-m-tan-cos-2-then-show-that-2-tan-1-n-m-n-m-tan-

Question Number 18695 by Arnab Maiti last updated on 27/Jul/17 $$\mathrm{if}\:\:\frac{\mathrm{n}\:\mathrm{tan}\theta}{\mathrm{cos}^{\mathrm{2}} \left(\alpha−\theta\right)}=\frac{\mathrm{m}\:\mathrm{tan}\left(\alpha−\theta\right)}{\mathrm{cos}^{\mathrm{2}} \theta} \\ $$$$\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{2}\theta=\alpha−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{n}−\mathrm{m}}{\mathrm{n}+\mathrm{m}}\mathrm{tan}\alpha\right) \\ $$ Answered by Tinkutara last updated…

prove-that-2tan-1-tan-2-tan-pi-4-2-tan-1-sin-cos-cos-sin-

Question Number 18693 by Arnab Maiti last updated on 27/Jul/17 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{2tan}^{−\mathrm{1}} \left[\mathrm{tan}\frac{\alpha}{\mathrm{2}}\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}−\frac{\beta}{\mathrm{2}}\right)\right] \\ $$$$=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\alpha\:\mathrm{cos}\beta}{\mathrm{cos}\alpha\:+\mathrm{sin}\beta}\right) \\ $$ Answered by 951172235v last updated on 01/Feb/19 $$\mathrm{tan}\:\frac{\Theta}{\mathrm{2}\:}\:=\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{tan}\:\left(\frac{\overset{−}…