Menu Close

Category: Trigonometry

The-value-of-cosA-cos2A-cos2-2-A-cos-2-n-1-A-where-A-R-may-be-1-1-2-2-3-1-4-sin-2-n-A-2-n-sin-A-

Question Number 18003 by Tinkutara last updated on 13/Jul/17 $$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{cos}{A}\centerdot\mathrm{cos2}{A}\centerdot\mathrm{cos2}^{\mathrm{2}} {A}\:…..\:\mathrm{cos}\left(\mathrm{2}^{{n}\:−\:\mathrm{1}} {A}\right), \\ $$$$\mathrm{where}\:{A}\:\in\:{R}\:\mathrm{may}\:\mathrm{be} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2} \\ $$$$\left(\mathrm{3}\right)\:−\mathrm{1} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{sin}\:\mathrm{2}^{{n}} \:{A}}{\mathrm{2}^{{n}} \:\mathrm{sin}\:{A}} \\…

Evaluate-cos-20-cos-40-cos-80-This-question-is-just-for-fun-and-practice-Evryone-who-wants-can-answer-this-question-

Question Number 17983 by alex041103 last updated on 13/Jul/17 $${Evaluate}\:{cos}\left(\mathrm{20}°\right){cos}\left(\mathrm{40}°\right){cos}\left(\mathrm{80}°\right). \\ $$$${This}\:{question}\:{is}\:{just}\:{for}\:{fun}\:{and}\:{practice}. \\ $$$${Evryone}\:{who}\:{wants}\:{can}\:{answer}\:{this}\:{question}. \\ $$ Answered by ajfour last updated on 13/Jul/17 $$\mathrm{cos}\:\mathrm{20}°\mathrm{cos}\:\mathrm{40}°\mathrm{cos}\:\mathrm{80}°= \\…

If-m-tan-30-o-n-tan-12-o-prove-that-cos-2-m-n-2-m-n-

Question Number 83513 by jagoll last updated on 03/Mar/20 $$\mathrm{If}\:\mathrm{m}\:\mathrm{tan}\:\left(\theta−\mathrm{30}^{\mathrm{o}} \right)\:=\:\mathrm{n}\:\mathrm{tan}\:\left(\theta+\mathrm{12}^{\mathrm{o}} \right) \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{cos}\:\mathrm{2}\theta\:=\:\frac{\mathrm{m}+\mathrm{n}}{\mathrm{2}\left(\mathrm{m}−\mathrm{n}\right)} \\ $$ Commented by mind is power last updated on 04/Mar/20…

The-value-of-the-expression-3-tan-2-1-3-tan-2-2-3-tan-2-3-3-tan-2-89-is-equal-to-

Question Number 17921 by Tinkutara last updated on 12/Jul/17 $$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{1}°\right)\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{2}°\right)\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{3}°\right)….\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{89}°\right) \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$ Commented by Tinkutara last updated…

tan-3a-tan-a-k-show-that-sin-3a-sin-a-2k-k-1-

Question Number 83425 by jagoll last updated on 02/Mar/20 $$\frac{\mathrm{tan}\:\mathrm{3a}}{\mathrm{tan}\:\mathrm{a}}\:=\:\mathrm{k} \\ $$$$\mathrm{show}\:\mathrm{that}\:\frac{\mathrm{sin}\:\mathrm{3a}}{\mathrm{sin}\:\mathrm{a}}\:=\:\frac{\mathrm{2k}}{\mathrm{k}−\mathrm{1}} \\ $$ Commented by jagoll last updated on 02/Mar/20 $$\mathrm{tan}\:\mathrm{3a}\:=\:\mathrm{k}\:\mathrm{tan}\:\mathrm{a} \\ $$$$\frac{\mathrm{3tan}\:\mathrm{a}−\mathrm{tan}\:^{\mathrm{3}} \mathrm{a}}{\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}}…

2sin-2-x-2-1-cos-x-sin-x-5cos-x-

Question Number 83352 by jagoll last updated on 01/Mar/20 $$\sqrt{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\left(\mathrm{1}−\mathrm{cos}\:\left(\mathrm{x}\right)\right)}\:=\:−\mathrm{sin}\:\left(−\mathrm{x}\right)−\mathrm{5cos}\:\left(\mathrm{x}\right) \\ $$ Commented by jagoll last updated on 01/Mar/20 $$\sqrt{\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}\:=\:\mathrm{sin}\:\left(\mathrm{x}\right)−\mathrm{5cos}\:\left(\mathrm{x}\right) \\ $$$$\sqrt{\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} \:}=\:\mathrm{sin}\:\left(\mathrm{x}\right)−\mathrm{5cos}\:\left(\mathrm{x}\right) \\…

For-x-0-pi-the-equation-sin-x-2-sin-2x-sin-3x-3-has-1-Infinitely-many-solutions-2-Three-solutions-3-One-solution-4-No-solution-

Question Number 17815 by Tinkutara last updated on 11/Jul/17 $$\mathrm{For}\:{x}\:\in\:\left(\mathrm{0},\:\pi\right),\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{sin}\:{x}\:+\:\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}\:−\:\mathrm{sin}\:\mathrm{3}{x}\:=\:\mathrm{3}\:\mathrm{has} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Infinitely}\:\mathrm{many}\:\mathrm{solutions} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Three}\:\mathrm{solutions} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{One}\:\mathrm{solution} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{No}\:\mathrm{solution} \\ $$ Commented by alex041103…