Menu Close

Category: Trigonometry

if-tan-tan-tan-1-tan-tan-show-that-sin-2-sin-2-sin-2-1-sin-2-sin-2-

Question Number 83319 by jagoll last updated on 29/Feb/20 $$\mathrm{if}\:\mathrm{tan}\:\beta\:=\:\frac{\mathrm{tan}\:\alpha\:+\:\mathrm{tan}\:\gamma}{\mathrm{1}+\mathrm{tan}\:\alpha\mathrm{tan}\:\gamma} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{sin}\:\mathrm{2}\beta\:=\:\frac{\mathrm{sin}\:\mathrm{2}\alpha+\mathrm{sin}\:\mathrm{2}\gamma}{\mathrm{1}+\mathrm{sin}\:\mathrm{2}\alpha\mathrm{sin}\:\mathrm{2}\gamma} \\ $$ Answered by mind is power last updated on 01/Mar/20 $${sin}\left(\mathrm{2}\beta\right)=\frac{\mathrm{2}{tg}\left(\beta\right)}{\mathrm{1}+{tg}^{\mathrm{2}} \left(\beta\right)}…

Question-148773

Question Number 148773 by mim24 last updated on 31/Jul/21 Answered by som(math1967) last updated on 31/Jul/21 $$\frac{\mathrm{1}}{\boldsymbol{{sin}}\mathrm{20}}\:+\frac{\sqrt{\mathrm{3}}}{\boldsymbol{{cos}}\mathrm{20}} \\ $$$$=\frac{\boldsymbol{{cos}}\mathrm{20}+\sqrt{\mathrm{3}}\boldsymbol{{sin}}\mathrm{20}}{\boldsymbol{{sin}}\mathrm{20}\boldsymbol{{cos}}\mathrm{20}} \\ $$$$=\frac{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{cos}}\mathrm{20}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\boldsymbol{{sin}}\mathrm{20}\right)}{\boldsymbol{{sin}}\mathrm{20}\boldsymbol{{cos}}\mathrm{20}} \\ $$$$=\frac{\mathrm{2}.\mathrm{2}\left(\boldsymbol{{cos}}\mathrm{60}\boldsymbol{{cos}}\mathrm{20}+\boldsymbol{{sin}}\mathrm{60}\boldsymbol{{sin}}\mathrm{20}\right)}{\mathrm{2}\boldsymbol{{sin}}\mathrm{20}\boldsymbol{{cos}}\mathrm{20}} \\ $$$$=\frac{\mathrm{4}\boldsymbol{{cos}}\left(\mathrm{60}−\mathrm{20}\right)}{\boldsymbol{{sin}}\mathrm{40}}…

Question-148768

Question Number 148768 by mim24 last updated on 31/Jul/21 Answered by liberty last updated on 31/Jul/21 $$\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{120}°+\mathrm{2A}\right)+\mathrm{1}−\mathrm{cos}\:\mathrm{2A}+\mathrm{1}−\mathrm{cos}\:\left(\mathrm{120}°−\mathrm{2A}\right)}{\mathrm{2}}\:= \\ $$$$\frac{\mathrm{3}−\mathrm{cos}\:\mathrm{2A}−\left\{\mathrm{cos}\:\left(\mathrm{120}°+\mathrm{2A}\right)+\mathrm{cos}\:\left(\mathrm{120}°−\mathrm{2A}\right)\right\}}{\mathrm{2}}= \\ $$$$\frac{\mathrm{3}−\mathrm{cos}\:\mathrm{2A}−\left\{\mathrm{2cos}\:\mathrm{120}°\mathrm{cos}\:\mathrm{2A}\right\}}{\mathrm{2}}= \\ $$$$\frac{\mathrm{3}−\mathrm{cos}\:\mathrm{2A}−\left\{−\mathrm{cos}\:\mathrm{2A}\right\}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$…

Question-148767

Question Number 148767 by mim24 last updated on 31/Jul/21 Answered by liberty last updated on 31/Jul/21 $$\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{20}°}\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{cos}\:\mathrm{20}°}=\frac{\mathrm{cos}\:\mathrm{20}°+\sqrt{\mathrm{3}}\mathrm{sin}\:\mathrm{20}°}{\mathrm{sin}\:\mathrm{20}°\mathrm{cos}\:\mathrm{20}°} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{20}°+\frac{\sqrt{\mathrm{3}}\mathrm{sin}\:\mathrm{20}°}{\mathrm{2}}}{\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{40}°} \\ $$$$=\frac{\mathrm{sin}\:\mathrm{30}°\mathrm{cos}\:\mathrm{20}°+\mathrm{cos}\:\mathrm{30}°\mathrm{sin}\:\mathrm{20}°}{\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{40}°} \\ $$$$=\frac{\mathrm{4sin}\:\mathrm{50}°}{\mathrm{cos}\:\mathrm{50}°}=\mathrm{4tan}\:\mathrm{50}°\:=\:\mathrm{4cot}\:\mathrm{40}° \\ $$…

ABC-is-a-triangular-park-with-AB-AC-100-m-A-clock-tower-is-situated-at-the-midpoint-of-BC-The-angles-of-elevation-of-top-of-the-tower-at-A-and-B-are-cot-1-3-2-and-cosec-1-2-6-respectiv

Question Number 17647 by Tinkutara last updated on 09/Jul/17 $${ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{triangular}\:\mathrm{park}\:\mathrm{with}\:{AB}\:= \\ $$$${AC}\:=\:\mathrm{100}\:\mathrm{m}.\:\mathrm{A}\:\mathrm{clock}\:\mathrm{tower}\:\mathrm{is}\:\mathrm{situated} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{BC}.\:\mathrm{The}\:\mathrm{angles}\:\mathrm{of} \\ $$$$\mathrm{elevation}\:\mathrm{of}\:\mathrm{top}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tower}\:\mathrm{at}\:{A}\:\mathrm{and} \\ $$$${B}\:\mathrm{are}\:\mathrm{cot}^{−\mathrm{1}} \left(\mathrm{3}.\mathrm{2}\right)\:\mathrm{and}\:\mathrm{cosec}^{−\mathrm{1}} \left(\mathrm{2}.\mathrm{6}\right) \\ $$$$\mathrm{respectively}.\:\mathrm{The}\:\mathrm{height}\:\mathrm{of}\:\mathrm{tower}\:\mathrm{is} \\ $$ Commented…

Find-max-amp-min-value-of-1-f-x-sin-3-x-1-cos-2-x-cos-3-x-1-sin-2-x-2-f-x-sin-x-1-cos-2-x-cos-x-1-sin-2-x-x-R-

Question Number 148674 by bemath last updated on 30/Jul/21 $$\:\mathrm{Find}\:\mathrm{max}\:\&\:\mathrm{min}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\left(\mathrm{1}\right)\:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:+\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:. \\ $$$$\left(\mathrm{2}\right)\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:+\mathrm{cos}\:\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:. \\ $$$$\:\mathrm{x}\:\in\:\mathbb{R}\: \\ $$ Answered…

Evaluate-sin-9-

Question Number 17497 by tawa tawa last updated on 06/Jul/17 $$\mathrm{Evaluate}:\:\:\:\mathrm{sin}\left(\mathrm{9}\right)° \\ $$ Answered by mrW1 last updated on 06/Jul/17 $$\mathrm{18}°+\mathrm{2}×\mathrm{18}°=\mathrm{90}°−\mathrm{2}×\mathrm{18}° \\ $$$$\mathrm{cos}\:\left(\mathrm{18}°+\mathrm{2}×\mathrm{18}°\right)=\mathrm{cos}\:\left(\mathrm{90}°−\mathrm{2}×\mathrm{18}°\right)=\mathrm{sin}\:\left(\mathrm{2}×\mathrm{18}°\right) \\ $$$$\mathrm{cos}\:\mathrm{18}\:\mathrm{cos}\:\left(\mathrm{2}×\mathrm{18}\right)−\mathrm{sin}\:\mathrm{18}\:\mathrm{sin}\:\left(\mathrm{2}×\mathrm{18}\right)=\mathrm{sin}\:\left(\mathrm{2}×\mathrm{18}\right)…

The-number-of-values-of-x-lying-in-pi-pi-and-satisfying-2-sin-2-cos-2-and-sin-2-2-cos-2-cos-1-0-is-

Question Number 17492 by Tinkutara last updated on 06/Jul/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{lying}\:\mathrm{in} \\ $$$$\left[−\pi,\:\pi\right]\:\mathrm{and}\:\mathrm{satisfying}\:\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:=\:\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\mathrm{and}\:\mathrm{sin}\:\mathrm{2}\theta\:+\:\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta\:−\:\mathrm{cos}\:\theta\:−\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{is} \\ $$ Answered by ajfour last updated on 08/Jul/17 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2sin}\:^{\mathrm{2}}…

Find-the-value-of-4-sin-pi-24-cos-pi-12-cos-pi-6-

Question Number 17435 by 786786AM last updated on 06/Jul/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{4}\:\mathrm{sin}\:\frac{\pi}{\mathrm{24}}\:\:\mathrm{cos}\:\frac{\pi}{\mathrm{12}}\:\:\mathrm{cos}\frac{\pi}{\mathrm{6}}. \\ $$ Answered by alex041103 last updated on 07/Jul/17 $$\mathrm{Let}\:{A}=\mathrm{4}{sin}\frac{\pi}{\mathrm{24}}{cos}\frac{\pi}{\mathrm{12}}{cos}\frac{\pi}{\mathrm{6}}. \\ $$$$\mathrm{Then}\:\mathrm{we}\:\mathrm{use}\:{sin}\mathrm{2}\theta=\mathrm{2}{sin}\theta{cos}\theta\:: \\ $$$${A}=\mathrm{2}\left(\mathrm{2}{sin}\frac{\pi}{\mathrm{24}}{cos}\frac{\pi}{\mathrm{24}}\right){cos}\frac{\pi}{\mathrm{12}}{cos}\frac{\pi}{\mathrm{6}}\:\frac{\mathrm{1}}{{cos}\frac{\pi}{\mathrm{24}}} \\…