Menu Close

Category: Trigonometry

The-number-of-intersecting-points-on-the-graph-for-sin-x-x-10-for-x-pi-pi-is-

Question Number 16675 by Tinkutara last updated on 25/Jun/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{intersecting}\:\mathrm{points}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{graph}\:\mathrm{for}\:\mathrm{sin}\:{x}\:=\:\frac{{x}}{\mathrm{10}}\:\mathrm{for}\:{x}\:\in\:\left[−\pi,\:\pi\right] \\ $$$$\mathrm{is} \\ $$ Answered by ajfour last updated on 25/Jun/17 Commented by…

Question-82134

Question Number 82134 by Raxreedoroid last updated on 18/Feb/20 Commented by Raxreedoroid last updated on 18/Feb/20 $$\mathrm{if}\:{s}\:\mathrm{is}\:\mathrm{an}\:\mathrm{arc}\:\mathrm{for}\:\mathrm{Circle}\:\mathrm{C} \\ $$$$\mathrm{and}\:\mathrm{r}\:\mathrm{and}\:\mathrm{Radius}\:\mathrm{are}\:\mathrm{Radius}\:\mathrm{for}\:\mathrm{C} \\ $$$$\mathrm{then}… \\ $$$${s}=\frac{\mathrm{7}\pi}{\mathrm{6}} \\ $$$${d}=\frac{\mathrm{7}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)}{\mathrm{2}}…

Prove-that-cos-3-2-3-cos-2-4-cos-6-sin-6-

Question Number 16598 by Tinkutara last updated on 24/Jun/17 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{3}} \:\mathrm{2}\theta\:+\:\mathrm{3}\:\mathrm{cos}\:\mathrm{2}\theta\:=\:\mathrm{4}\left(\mathrm{cos}^{\mathrm{6}} \:\theta\:−\:\mathrm{sin}^{\mathrm{6}} \:\theta\right) \\ $$ Answered by ajfour last updated on 24/Jun/17 $$\mathrm{L}.\mathrm{H}.\mathrm{S}.\:=\:\mathrm{cos}\:\mathrm{2}\theta\left(\mathrm{cos}\:^{\mathrm{2}}…

tan-x-pi-4-3-tan-pi-9-tan-2pi-9-tan-x-pi-4-tan-pi-9-tan-2pi-9-

Question Number 147643 by bobhans last updated on 22/Jul/21 $$\:\mathrm{tan}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{3}\left(\mathrm{tan}\:\frac{\pi}{\mathrm{9}}+\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\right)=\mathrm{tan}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)\mathrm{tan}\:\frac{\pi}{\mathrm{9}}\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}} \\ $$ Answered by liberty last updated on 22/Jul/21 $$\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)\mathrm{tan}\:\frac{\pi}{\mathrm{9}}\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}=−\mathrm{3}\left(\mathrm{tan}\:\frac{\pi}{\mathrm{9}}+\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\right) \\ $$$$\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)\left[\mathrm{1}−\mathrm{tan}\:\frac{\pi}{\mathrm{9}}\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\right]=−\mathrm{3}\left(\mathrm{tan}\:\frac{\pi}{\mathrm{9}}+\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\right) \\ $$$$\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)=−\mathrm{3}\left(\frac{\mathrm{tan}\:\frac{\pi}{\mathrm{9}}+\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}{\mathrm{1}−\mathrm{tan}\:\frac{\pi}{\mathrm{9}}\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}\right) \\…

2sin-2x-4sin-2-x-7cos-2x-pi-2-lt-x-lt-pi-sin-2x-

Question Number 147581 by EDWIN88 last updated on 22/Jul/21 $$\:\:\mathrm{2sin}\:\mathrm{2x}\:−\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}\:=\:\mathrm{7cos}\:\mathrm{2x}\: \\ $$$$\:\frac{\pi}{\mathrm{2}}<\mathrm{x}<\pi\:\Rightarrow\:\mathrm{sin}\:\mathrm{2x}\:=? \\ $$ Answered by iloveisrael last updated on 22/Jul/21 $$\:\mathrm{If}\:\mathrm{2sin}\:\mathrm{2x}−\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}\:=\:\mathrm{7cos}\:\mathrm{2x}\: \\…

if-tan-x-sec-x-7-8-find-cot-x-cosec-x-

Question Number 81963 by jagoll last updated on 17/Feb/20 $${if}\:\mathrm{tan}\:\left({x}\right)+\mathrm{sec}\:\left({x}\right)\:=\:\frac{\mathrm{7}}{\mathrm{8}} \\ $$$${find}\:\mathrm{cot}\:\left({x}\right)+\mathrm{cosec}\:\left({x}\right)\:=\: \\ $$ Commented by john santu last updated on 17/Feb/20 $${let}\:\mathrm{cot}\:\left({x}\right)+\mathrm{cosec}\:\left({x}\right)\:=\:{t} \\ $$$$\left({i}\right)\:\left\{\mathrm{tan}\:\left({x}\right)+\mathrm{sec}\:\left({x}\right)\right\}×\left\{\mathrm{cot}\:\left({x}\right)+\mathrm{cosec}\:\left({x}\right)\right\}=\:\frac{\mathrm{7}{t}}{\mathrm{8}}…

In-ABC-with-usual-notation-r-1-bc-r-2-ca-r-3-ab-is-1-1-r-1-R-2-1-r-1-2R-3-1-r-1-2R-4-1-r-1-R-

Question Number 16430 by Tinkutara last updated on 22/Jun/17 $$\mathrm{In}\:\Delta{ABC}\:\mathrm{with}\:\mathrm{usual}\:\mathrm{notation} \\ $$$$\frac{{r}_{\mathrm{1}} }{{bc}}\:+\:\frac{{r}_{\mathrm{2}} }{{ca}}\:+\:\frac{{r}_{\mathrm{3}} }{{ab}}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{{r}}\:−\:\frac{\mathrm{1}}{{R}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}}{{r}}\:−\:\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{1}}{{r}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{1}}{{r}}\:+\:\frac{\mathrm{1}}{{R}} \\ $$…