Question Number 63361 by rajesh4661kumar@gamil.com last updated on 03/Jul/19 Commented by Prithwish sen last updated on 03/Jul/19 $$\mathrm{tan3A}\:=\:\mathrm{tan}\left(\mathrm{2A}+\mathrm{A}\right)=\frac{\mathrm{tan2A}+\mathrm{tanA}}{\mathrm{1}−\mathrm{tan2AtanA}} \\ $$$$\mathrm{tan3A}−\mathrm{tan3Atan2AtanA}\:=\:\mathrm{tan2A}+\mathrm{tanA} \\ $$$$\mathrm{tan3A}−\mathrm{tan2A}−\mathrm{tanA}\:=\:\mathrm{tan3Atan2AtanA}\:\mathrm{proved}. \\ $$ Commented…
Question Number 63300 by Rio Michael last updated on 02/Jul/19 $${show}\:{that}\:\: \\ $$$$\left.{a}\right)\:\mathrm{1}\:+\:{tan}\:\left(\frac{\pi}{\mathrm{4}}\:+\:{A}\right)\:=\:\frac{\mathrm{2}}{\mathrm{1}−{tanA}} \\ $$$$\left.{b}\right)\:\mathrm{2}{cos}\mathrm{2}\theta{sin}\theta\:+\:\mathrm{9}{sin}\theta\:+\:\mathrm{3}\:\equiv\:\mathrm{11}{sin}\theta\:−\:\mathrm{4}{sin}^{\mathrm{3}} \theta\:+\:\mathrm{3} \\ $$ Commented by kaivan.ahmadi last updated on 02/Jul/19…
Question Number 128808 by liberty last updated on 10/Jan/21 $$\:\mathrm{If}\:{x}\:\mathrm{cos}\:{q}\:−\:\mathrm{sin}\:{q}\:=\:\mathrm{1}\:\mathrm{then}\:{x}^{\mathrm{2}} +\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\mathrm{sin}\:{q}\:=?\: \\ $$ Commented by benjo_mathlover last updated on 10/Jan/21 $$\:{x}\:=\:\frac{\mathrm{cos}\:^{\mathrm{2}} \frac{{q}}{\mathrm{2}}+\mathrm{sin}\:^{\mathrm{2}} \frac{{q}}{\mathrm{2}}+\mathrm{2sin}\:\frac{{q}}{\mathrm{2}}\mathrm{cos}\:\frac{{q}}{\mathrm{2}}}{\mathrm{cos}\:^{\mathrm{2}} \frac{{q}}{\mathrm{2}}−\mathrm{sin}\:^{\mathrm{2}}…
Question Number 128788 by bramlexs22 last updated on 10/Jan/21 $$\:\mathrm{Prove}\:\mathrm{that}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)\left(\mathrm{1}+\mathrm{tan}\:\mathrm{4x}\right)\:=\mathrm{2}? \\ $$ Commented by bramlexs22 last updated on 10/Jan/21 $$\mathrm{i}\:\mathrm{think}\:\mathrm{its}\:\mathrm{not}\:\mathrm{true}\:! \\ $$ Commented by mr…
Question Number 128780 by bramlexs22 last updated on 10/Jan/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{from}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{1}+\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}+…+\infty\:=\:\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}\: \\ $$ Answered by liberty last updated on 10/Jan/21 $$\:\mathrm{Its}\:\mathrm{GP}\:\mathrm{with}\:\begin{cases}{\mathrm{T}_{\mathrm{1}}…
Question Number 128755 by bramlexs22 last updated on 10/Jan/21 $$\mathrm{Solve}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}−\mathrm{1}\right)+\mathrm{tan}^{−\mathrm{1}} \mathrm{x}\:+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}+\mathrm{1}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \mathrm{3x} \\ $$ Answered by liberty last updated on 10/Jan/21 $$''\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}−\mathrm{1}\right)+\mathrm{tan}^{−\mathrm{1}}…
Question Number 128753 by bramlexs22 last updated on 10/Jan/21 $$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{27}^{\mathrm{cos}\:\mathrm{2x}} .\:\mathrm{81}^{\mathrm{sin}\:\mathrm{2x}} \:? \\ $$ Answered by liberty last updated on 10/Jan/21 $$\:\Leftrightarrow\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{3}^{\mathrm{3cos}\:\mathrm{2x}} .\:\mathrm{3}^{\mathrm{4sin}\:\mathrm{2x}}…
Question Number 128743 by bemath last updated on 10/Jan/21 $$\:\:\:\:\:\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}\:+\:\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}\:+\:\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{1} \\ $$$$\:\:\:\mathrm{Find}\:\mathrm{x}\:. \\ $$ Answered by liberty last updated on 10/Jan/21 $$\:\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{3}}…
Question Number 128681 by bemath last updated on 09/Jan/21 $$\:\mathrm{Given}\:\sqrt[{\mathrm{3}}]{\mathrm{sin}\:\mathrm{x}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}\:=\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}} \\ $$$$\:\mathrm{then}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:=?\: \\ $$ Commented by MJS_new last updated on 09/Jan/21 $$\mathrm{not}\:\mathrm{funny}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{exactly}\:\mathrm{but}\:\mathrm{possible}… \\ $$…
Question Number 128659 by liberty last updated on 09/Jan/21 $$\:\mathrm{tan}\:\left(\frac{\mathrm{3}\pi}{\mathrm{11}}\right)\:+\:\mathrm{4}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{11}}\right)\:=\:?\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com