Menu Close

Category: Trigonometry

cos-pi-18-cos-3pi-18-cos-5pi-18-cos-7pi-18-

Question Number 186741 by cortano12 last updated on 09/Feb/23 $$\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{18}}\right).\mathrm{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{18}}\right).\mathrm{cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{18}}\right).\mathrm{cos}\:\left(\frac{\mathrm{7}\pi}{\mathrm{18}}\right)=? \\ $$ Answered by pablo1234523 last updated on 09/Feb/23 $$\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{cos}\:\frac{\mathrm{8}\pi}{\mathrm{18}}+\mathrm{cos}\:\frac{\mathrm{6}\pi}{\mathrm{18}}\right]\centerdot\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{cos}\:\frac{\mathrm{8}\pi}{\mathrm{18}}+\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{18}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{cos}^{\mathrm{2}} \:\frac{\mathrm{4}\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{9}}\mathrm{cos}\:\frac{\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{9}}\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{9}}\mathrm{cos}\:\frac{\pi}{\mathrm{9}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{1}+\mathrm{cos}\:\frac{\mathrm{8}\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\mathrm{7}\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{9}}+\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\right)…

Question-186737

Question Number 186737 by Rupesh123 last updated on 09/Feb/23 Commented by Frix last updated on 09/Feb/23 $$\mathrm{No}. \\ $$$$\mathrm{There}'\mathrm{s}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{area}\:\frac{\mathrm{1}}{\mathrm{17425}}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}. \\ $$ Answered by mr W…

show-that-lim-x-0-sinx-x-1-

Question Number 121050 by mathocean1 last updated on 05/Nov/20 $$\mathrm{show}\:\mathrm{that}\: \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}\:} {\mathrm{lim}}\:\frac{\mathrm{sinx}}{\mathrm{x}}=\mathrm{1} \\ $$ Answered by 675480065 last updated on 05/Nov/20 $$\mathrm{as}\:\mathrm{x}\rightarrow\mathrm{0},\:\mathrm{sinx}\rightarrow\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!}+\mathrm{0}\left(\mathrm{x}^{\mathrm{3}} \right)\right)…

prove-the-following-identities-a-sin-1-cos-2-tan-b-1-cos-2-sin-sin-2-cos-tan-c-cos-x-y-sin-x-y-cos-2ycos-2x-1-cos-x-y-sin-y-x-

Question Number 55141 by 0201011563081 last updated on 18/Feb/19 $${prove}\:{the}\:{following}\:{identities} \\ $$$$ \\ $$$${a}.\frac{\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}=\mathrm{tan}\:\theta \\ $$$${b}.\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta−\mathrm{sin}\:\theta}{\mathrm{sin}\:\mathrm{2}\theta−\mathrm{cos}\:\theta}=\mathrm{tan}\:\theta \\ $$$${c}.\frac{\mathrm{cos}\:\left({x}+{y}\right)+\mathrm{sin}\:\left({x}−{y}\right)}{\mathrm{cos}\:\mathrm{2}{y}\mathrm{cos}\:\mathrm{2}{x}}=\frac{\mathrm{1}}{\mathrm{cos}\:\left({x}+{y}\right)\mathrm{sin}\:\left({y}−{x}\right)} \\ $$ Commented by math1967 last updated…