Menu Close

Category: Trigonometry

probably-cos-nx-2-n-1-cos-n-x-n2-n-3-cos-n-2-n-3-n-2-2-n-5-cos-n-4-x-wow-

Question Number 43268 by Rauny last updated on 09/Sep/18 $$\mathrm{probably},\:\mathrm{cos}\:{nx}=\mathrm{2}^{{n}−\mathrm{1}} \mathrm{cos}^{{n}} \:{x}−{n}\mathrm{2}^{{n}−\mathrm{3}} \mathrm{cos}^{{n}−\mathrm{2}} \: \\ $$$$+\frac{\left({n}−\mathrm{3}\right){n}}{\mathrm{2}}\mathrm{2}^{{n}−\mathrm{5}} \mathrm{cos}^{{n}−\mathrm{4}} \:{x}\ldots \\ $$$$\mathrm{wow} \\ $$ Commented by Rauny…

cos-2x-2cos-2-1-cos-3x-4cos-3-x-3cos-x-cos-4x-8cos-4-x-8cos-2-x-1-cos-5x-16cos-5-x-20cos-3-5cos-x-cos-6x-32cos-6-x-48cos-4-x-18cos-2-x-1-cos-7x-64cos-7-x-112cos-5-x-56cos-3-x-4cos-x-cos-8

Question Number 43267 by Rauny last updated on 09/Sep/18 $$\mathrm{cos}\:\mathrm{2}{x}=\mathrm{2cos}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{cos}\:\mathrm{3}{x}=\mathrm{4cos}^{\mathrm{3}} \:{x}−\mathrm{3cos}\:{x} \\ $$$$\mathrm{cos}\:\mathrm{4}{x}=\mathrm{8cos}^{\mathrm{4}} \:{x}−\mathrm{8cos}^{\mathrm{2}} \:{x}+\mathrm{1} \\ $$$$\mathrm{cos}\:\mathrm{5}{x}=\mathrm{16cos}^{\mathrm{5}} \:{x}−\mathrm{20cos}^{\mathrm{3}} +\mathrm{5cos}\:{x}\: \\ $$$$\mathrm{cos}\:\mathrm{6}{x}=\mathrm{32cos}^{\mathrm{6}} \:{x}−\mathrm{48cos}^{\mathrm{4}}…

Question-108780

Question Number 108780 by 150505R last updated on 19/Aug/20 Answered by bobhans last updated on 19/Aug/20 $$\mathrm{cot}\:^{\mathrm{2}} \:\mathrm{81}°\:=\:\mathrm{tan}\:^{\mathrm{2}} \:\mathrm{9}\: \\ $$$$\mathrm{cot}\:^{\mathrm{2}} \:\mathrm{63}°\:=\:\mathrm{tan}\:^{\mathrm{2}} \:\mathrm{27}\: \\ $$$$\left(\ast\right)\:\frac{\mathrm{1}}{\mathrm{2}−\mathrm{cot}\:^{\mathrm{2}}…

Question-43192

Question Number 43192 by Raj Singh last updated on 08/Sep/18 Commented by Rauny last updated on 09/Sep/18 $$\mathrm{cosec}\:{x}+\mathrm{sec}\:{x}=\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+\frac{\mathrm{1}}{\mathrm{cos}\:{x}}=\mathrm{2} \\ $$$$\mathrm{cos}\:{x}+\mathrm{sin}\:{x}=\mathrm{2sin}\:{x}\mathrm{cos}\:{x} \\ $$$${A}={B}\Rightarrow{A}^{\mathrm{2}} ={B}^{\mathrm{2}} , \\…

bemath-find-the-value-of-sin-pi-9-sin-2pi-9-sin-3pi-9-sin-4pi-9-

Question Number 108644 by bemath last updated on 18/Aug/20 $$\:\:\:\frac{{bemath}}{\bigstar} \\ $$$${find}\:{the}\:{value}\:{of}\: \\ $$$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{9}}\right)\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{9}}\right)\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{9}}\right)\mathrm{sin}\:\left(\frac{\mathrm{4}\pi}{\mathrm{9}}\right)?\: \\ $$ Commented by bemath last updated on 18/Aug/20 $${great}\:{answer}\:{all}\:{master} \\…