Menu Close

Category: Vector

If-P-2-j3-and-Q-2-j3-and-R-j1-Show-that-angle-PRQ-is-right-angle-

Question Number 51263 by Tawa1 last updated on 25/Dec/18 $$\mathrm{If}\:\:\mathrm{P}\:=\:\mathrm{2}\:+\:\mathrm{j3}\:\mathrm{and}\:\mathrm{Q}\:=\:\mathrm{2}\:−\:\mathrm{j3}\:\mathrm{and}\:\mathrm{R}\:=\:\mathrm{j1} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\:\mathrm{angle}\:\:\mathrm{PRQ}\:\mathrm{is}\:\mathrm{right}\:\mathrm{angle} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18 $${P}\left(\mathrm{2},\mathrm{3}\right)\:\:\:{Q}\left(\mathrm{2},−\mathrm{3}\right)\:\:\:{R}\left(\mathrm{0},\mathrm{1}\right) \\ $$$${PQ}=\mathrm{6}\:\:\:\:{QR}=\sqrt{\mathrm{2}^{\mathrm{2}} +\left(−\mathrm{4}\right)^{\mathrm{2}}…

if-2x-1-x-1-2-find-the-value-8x-1-x-

Question Number 181707 by amin96 last updated on 28/Nov/22 $$\boldsymbol{{if}}\:\:\:\:\:\mathrm{2}\boldsymbol{{x}}+\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\:\:\mathrm{8}\boldsymbol{{x}}+\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}}}=? \\ $$ Answered by mr W last updated on 29/Nov/22 $${t}=\sqrt{{x}}>\mathrm{0} \\ $$$${f}\left({t}\right)=\mathrm{2}{t}^{\mathrm{2}}…

A-vector-of-magnitude-2-along-a-bisector-of-the-angle-between-the-two-vectors-2i-2j-k-and-i-2j-2k-is-

Question Number 115258 by bobhans last updated on 24/Sep/20 $${A}\:{vector}\:{of}\:{magnitude}\:\mathrm{2}\:{along}\:{a}\:{bisector} \\ $$$${of}\:{the}\:{angle}\:{between}\:{the}\:{two}\:{vectors} \\ $$$$\mathrm{2}\hat {{i}}−\mathrm{2}\hat {{j}}+\hat {{k}}\:{and}\:\hat {{i}}+\mathrm{2}\hat {{j}}−\mathrm{2}\hat {{k}}\:{is}\:\_\_ \\ $$ Answered by bemath…

nice-mathematics-show-that-0-1-li-2-x-dx-pi-2-6-1-m-n-july-1970-

Question Number 114975 by mnjuly1970 last updated on 22/Sep/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\:\:{nice}\:\:{mathematics}….\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{show}\:\:{that}\:::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {li}_{\mathrm{2}} \left({x}\right){dx}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\mathrm{1}\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$ \\…