Menu Close

Category: Mechanics

Question-226442

Question Number 226442 by mr W last updated on 28/Nov/25 Commented by mahdipoor last updated on 29/Nov/25 $$\mathrm{for}\:\mathrm{mass}\:\mathrm{M} \\ $$$$\Sigma\mathrm{F}=\mathrm{ma}\:\:\left(\mathrm{for}\:\mathrm{CM}\right) \\ $$$$\begin{cases}{\mathrm{A}=\left(\overset{..} {\mathrm{x}}−\alpha.\mathrm{l}.\mathrm{cos}\theta−\omega^{\mathrm{2}} .\mathrm{l}.\mathrm{sin}\theta\right)\mathrm{M}}\\{\mathrm{B}=\left(−\alpha.\mathrm{l}.\mathrm{sin}\theta+\omega^{\mathrm{2}} .\mathrm{l}.\mathrm{cos}\theta\right)\mathrm{M}}\end{cases}…

A-hemispherical-bowl-of-radius-R-with-maimum-water-in-it-without-needing-to-spill-is-spinning-with-the-content-at-constant-Find-volume-of-water-in-bowl-

Question Number 226293 by ajfour last updated on 25/Nov/25 $${A}\:{hemispherical}\:{bowl}\:{of}\:{radius}\:{R} \\ $$$$\:{with}\:{maimum}\:{water}\:{in}\:{it}\:{without} \\ $$$${needing}\:{to}\:{spill}\:{is}\:{spinning}\:{with}\:{the} \\ $$$${content}\:{at}\:{constant}\:\omega.\:{Find}\:{volume} \\ $$$${of}\:{water}\:{in}\:{bowl}. \\ $$$$ \\ $$ Commented by fantastic2…