Menu Close

Category: Mechanics

Two-masses-m-and-2m-approach-each-l-along-a-path-at-right-angle-to-each-other-and-move-off-at-2m-s-at-angle-37-to-the-original-direction-of-mass-m-What-where-the-initial-speeds-of-the-two-particles-

Question Number 29213 by NECx last updated on 05/Feb/18 $${Two}\:{masses}\:{m}\:{and}\:\mathrm{2}{m},{approach} \\ $$$${each}\:{l}\:{along}\:{a}\:{path}\:{at}\:{right} \\ $$$${angle}\:{to}\:{each}\:{other}\:{and}\:{move}\:{off} \\ $$$${at}\:\mathrm{2}{m}/{s}\:{at}\:{angle}\:\mathrm{37}°\:{to}\:{the} \\ $$$${original}\:{direction}\:{of}\:{mass}\:{m}. \\ $$$${What}\:{where}\:{the}\:{initial}\:{speeds}\:{of} \\ $$$${the}\:{two}\:{particles}? \\ $$ Commented…

Question-29093

Question Number 29093 by ajfour last updated on 04/Feb/18 Commented by ajfour last updated on 04/Feb/18 $${Two}\:{rods}\:{mutually}\:{joined}\:{at} \\ $$$${hinge}\:{H},\:{lie}\:{on}\:{a}\:{frictionless} \\ $$$${horizontal}\:{surface},\:{are}\:{hit}\:{by} \\ $$$${two}\:{point}\:{masses}\:{inelastically}. \\ $$$$\left({a}\right)\:{Find}\:{angular}\:{velocity}\:{of}\:{each}…

Question-29016

Question Number 29016 by ajfour last updated on 03/Feb/18 Commented by ajfour last updated on 03/Feb/18 $${Find}\:{maximum}\:{value}\:{of}\:\boldsymbol{{m}} \\ $$$${if}\:{bigger}\:{sphere}\:{has}\:{to}\:{remain} \\ $$$${in}\:{contact}\:{with}\:{wall}.{Assume} \\ $$$${friction}\:{coefficient}\:{large}\:{enough} \\ $$$${at}\:{all}\:{surfaces}.\:\:{r},\:{R}\:{constant}\:;…

Question-28940

Question Number 28940 by ajfour last updated on 01/Feb/18 Commented by ajfour last updated on 01/Feb/18 $$\left({i}\right)\:{Find}\:{tension}\:{in}\:{the}\:{three}\: \\ $$$${threads},\:{each}\:{of}\:{length}\:{l}. \\ $$$$\left({ii}\right)\:{Find}\:{tension}\:{for}\:{a}={b}={c}\: \\ $$$$\left({The}\:{blue}\:{triangle}\:{is}\:{a}\:{portion}\:{of}\right. \\ $$$$\left.{the}\:{roof}\:\right)\:.…

If-T-2pi-L-g-1-2-and-L-100-0-1-cm-limit-standard-error-T-2-01-0-01-s-limit-standard-error-Calculate-the-value-of-g-and-its-standard-error-

Question Number 28929 by NECx last updated on 01/Feb/18 $${If}\:{T}=\mathrm{2}\pi\left(\frac{{L}}{{g}}\right)^{\frac{\mathrm{1}}{\mathrm{2}\:}} \:{and} \\ $$$${L}=\mathrm{100}\pm\mathrm{0}.\mathrm{1}\:{cm}\left({limit}\:{standard}\:\right. \\ $$$$\left.{error}\right) \\ $$$${T}=\mathrm{2}.\mathrm{01}\pm\mathrm{0}.\mathrm{01}\:{s}\:\left({limit}\:{standard}\right. \\ $$$$\left.{error}\right) \\ $$$${Calculate}\:{the}\:{value}\:{of}\:{g}\:{and}\:{its} \\ $$$${standard}\:{error}. \\ $$…

Question-28835

Question Number 28835 by ajfour last updated on 30/Jan/18 Commented by ajfour last updated on 30/Jan/18 $${One}\:{sphere}\:{over}\:{another},\:{the} \\ $$$${two}\:{confined}\:{between}\:{ground} \\ $$$${and}\:{two}\:{inclined}\:{walls}. \\ $$$${Find}\:{contact}\:{force}\:{at}\:{each}\:{contact} \\ $$$${point}\::\:\left({Assume}\:{surfaces}\:{frictionless}\right).…

Question-28709

Question Number 28709 by Tinkutara last updated on 29/Jan/18 Answered by ajfour last updated on 29/Jan/18 $${lets}\:{say}\:{v}_{\mathrm{0}} '\:={u}\:>\:{v}_{\mathrm{0}} \:\left({just}\:{to}\:{imagine}\right) \\ $$$${As}\:{block}\:{climbs}\:{up}\:{along} \\ $$$${vertical}\:{surface}\:{of}\:{sledge}, \\ $$$${after}\:{the}\:{bend}\:{both}\:{sledge}\:{and}…