Question Number 213288 by mr W last updated on 02/Nov/24 Answered by mr W last updated on 02/Nov/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213234 by ajfour last updated on 01/Nov/24 Commented by Ghisom last updated on 01/Nov/24 $$\mathrm{let}\:{r}=\mathrm{1} \\ $$$${P}\in\mathrm{circle}:\:{P}=\begin{pmatrix}{\mathrm{cos}\:\theta}\\{\mathrm{1}+\mathrm{sin}\:\theta}\end{pmatrix} \\ $$$$\mathrm{parabola}:\:{y}=\left(\frac{\mathrm{2}+\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}−\frac{{x}}{\mathrm{cos}^{\mathrm{2}} \:\theta}\right){x} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{2}+\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta} \\…
Question Number 213043 by ajfour last updated on 29/Oct/24 Commented by ajfour last updated on 29/Oct/24 $${Find}\:\beta\:{such}\:{that}\:{it}\:{remains}\:{constant} \\ $$$${while}\:{the}\:{motion}\:{of}\:{frame}\:{down}\:{the} \\ $$$${slope}\:{of}\:{inclination}\:\alpha. \\ $$ Commented by…
Question Number 212901 by ajfour last updated on 26/Oct/24 Commented by ajfour last updated on 26/Oct/24 $${Find}\:{x}\:{and}\:{u}_{{min}} . \\ $$ Commented by ajfour last updated…
Question Number 212867 by mr W last updated on 25/Oct/24 $${solution}\:{to}\:{Q}\mathrm{212752} \\ $$ Commented by mr W last updated on 26/Oct/24 Commented by mr W…
Question Number 212752 by mr W last updated on 25/Oct/24 Commented by mr W last updated on 25/Oct/24 $${the}\:{uniform}\:{rod}\:{with}\:{length}\:\boldsymbol{{l}}\:{has}\: \\ $$$${mass}\:\boldsymbol{{m}}.\:{find}\:{the}\:{tensions}\:{in}\:{the} \\ $$$${strings}\:{a}\:{and}\:{b}. \\ $$…
Question Number 212498 by ChantalYah last updated on 15/Oct/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212240 by MathMaster5271 last updated on 07/Oct/24 $${Pi}\:−\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212170 by ajfour last updated on 04/Oct/24 Commented by ajfour last updated on 08/Oct/24 Commented by ajfour last updated on 08/Oct/24 $${I}\:{suspect}\:{it}\:{might}\:{happen}\:{this}\:{way}. \\…
Question Number 211677 by MrGaster last updated on 16/Sep/24 $$\mathrm{Consider}\:\mathrm{a}\:\mathrm{system}\:\mathrm{consisting}\:\mathrm{ofw} \\ $$$$\mathrm{to}\:\mathrm{masses}.\boldsymbol{{m}}_{\mathrm{1}} \boldsymbol{\mathrm{and}}\:\boldsymbol{{m}}_{\mathrm{2}} ,\mathrm{where}\:\mathrm{the}\:\mathrm{pendulum}\:\mathrm{rod}\:\mathrm{has}\:\mathrm{an} \\ $$$$\mathrm{nolinear}\:\mathrm{elastic}\:\mathrm{coefficient}\:\boldsymbol{{k}}\left(\boldsymbol{\theta}\right)=\boldsymbol{{k}}_{\mathrm{0}} \left(\mathrm{1}+\boldsymbol{\alpha\theta}^{\mathrm{2}} \right),\mathrm{with}\boldsymbol{\theta}\:\mathrm{being}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\: \\ $$$$\mathrm{rodand}\:\mathrm{the}\:\mathrm{vertical}\:\mathrm{direction}. \\ $$$$\mathrm{Suppose}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{is}\:\mathrm{smallh} \\ $$$$\mathrm{enoug}\:\mathrm{that}\:\boldsymbol{\theta}\:\mathrm{The}\:\mathrm{square}\:\mathrm{of}\:\mathrm{can}\:\mathrm{be}\:\mathrm{ignored}\: \\…