Menu Close

0-dx-1-e-x-2-by-two-method-




Question Number 134546 by mohammad17 last updated on 05/Mar/21
∫_0 ^( ∞) (dx/(1+e^x^2  ))  by two method
0dx1+ex2bytwomethod
Answered by Dwaipayan Shikari last updated on 05/Mar/21
∫_0 ^∞ (dx/(1+e^x^2  ))        x^2 =u  =(1/2)∫_0 ^∞ (u^(−(1/2)) /(1+e^u ))du=(1/2)Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^∞ e^(−nu) u^(−(1/2)) du  =(1/2)Σ_(n=1) ^∞ (−1)^(n+1) ((Γ((1/2)))/n^(1/2) )=(1/2)ζ((1/2))(1−(1/2^((1/2)−1) ))(√π)=((√π)/2)ζ((1/2))(1−(√2))
0dx1+ex2x2=u=120u121+eudu=12n=1(1)n+10enuu12du=12n=1(1)n+1Γ(12)n12=12ζ(12)(112121)π=π2ζ(12)(12)
Commented by mohammad17 last updated on 05/Mar/21
sir whats the value or formulla of  ζ
sirwhatsthevalueorformullaofζ
Commented by Dwaipayan Shikari last updated on 05/Mar/21
Σ_(n=1) ^∞ (−1)^(n+1) (1/n^s )=ζ(s)(1−(1/2^(s−1) ))
n=1(1)n+11ns=ζ(s)(112s1)
Answered by mathmax by abdo last updated on 05/Mar/21
Φ =∫_0 ^∞  (dx/(1+e^x^2  ))  we do the changement x^2 =t ⇒  Φ =∫_0 ^∞    (dt/(2(√t)(1+e^t ))) =(1/2)∫_0 ^∞  (t^(−(1/2)) /(1+e^t ))dt =(1/2)∫_0 ^∞  ((t^(−(1/2))  e^(−t) )/(1+e^(−t) ))dt  =(1/2)∫_0 ^∞  t^(−(1/2))  e^(−t) Σ_(n=0) ^∞  (−1)^n  e^(−nt)  dt  =(1/2)Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞  t^(−(1/2))  e^(−(n+1)t)  dt  =_((n+1)t=z)   (1/2)Σ_(n=0) ^(∞ ) (−1)^n  ∫_0 ^∞ ((z/(n+1)))^(−(1/2))  e^(−z)  (dz/(n+1))  =(1/2)Σ_(n=0) ^∞  (−1)^n  (1/((n+1)^(1/2) ))∫_0 ^∞  z^(−(1/2))  e^(−z)  dz  =((Γ((1/2)))/2)Σ_(n=1) ^(∞ )   (((−1)^(n−1) )/n^(1/2) ) =−(1/2)(√π)δ((1/2))  δ(x)=Σ_(n=1) ^∞  (((−1)^n )/n^x ) =(2^(1−x) −1)ξ(x) ⇒δ((1/2))=(2^(1/2) −1)ξ((1/2))  =((√2)−1)ξ((1/2))....
Φ=0dx1+ex2wedothechangementx2=tΦ=0dt2t(1+et)=120t121+etdt=120t12et1+etdt=120t12etn=0(1)nentdt=12n=0(1)n0t12e(n+1)tdt=(n+1)t=z12n=0(1)n0(zn+1)12ezdzn+1=12n=0(1)n1(n+1)120z12ezdz=Γ(12)2n=1(1)n1n12=12πδ(12)δ(x)=n=1(1)nnx=(21x1)ξ(x)δ(12)=(2121)ξ(12)=(21)ξ(12).

Leave a Reply

Your email address will not be published. Required fields are marked *