Menu Close

1-calculatef-a-0-cos-arctanx-a-x-2-dx-with-a-gt-0-2-calculste-g-a-0-cos-arctanx-a-x-2-2-3-find-the-value-if-integrals-0-cos-arctanx-2-x-2-and-0-




Question Number 68600 by Abdo msup. last updated on 14/Sep/19
1)calculatef(a)=  ∫_0 ^∞   ((cos(arctanx))/(a+x^2 ))dx with a>0  2)?calculste  g(a) =∫_0 ^∞  ((cos(arctanx))/((a+x^2 )^2 ))  3)find the value if integrals  ∫_0 ^∞   ((cos(arctanx))/(2+x^2 )) and ∫_0 ^∞   ((cos(arctanx))/((1+x^2 )^2 ))
$$\left.\mathrm{1}\right){calculatef}\left({a}\right)=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{{a}+{x}^{\mathrm{2}} }{dx}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)?{calculste}\:\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({arctanx}\right)}{\left({a}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{if}\:{integrals} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{\mathrm{2}+{x}^{\mathrm{2}} }\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$
Commented by mathmax by abdo last updated on 14/Sep/19
1) we have 2f(a)=∫_(−∞) ^(+∞)  ((cos(arctanx))/(x^2  +a))dx =Re(∫_(−∞) ^(+∞)  (e^(iarctan(x)) /(x^2  +a))dx)  let ϕ(z) =(e^(i arctan(z)) /(z^2 +a)) ⇒ϕ(z) =(e^(iarctan(z)) /((z−i(√a))(z+i(√a)))) residus theorem  give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,i(√a))  Res(ϕ,i(√a)) =(e^(iarctan(i(√a))) /(2i(√a))) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(e^(iarctan(iz)) /(2i(√a)))  =(π/( (√a))) {cos(arctan(iz))+isin(artan(iz))}  rest to find arctan(iz)  .....be continued....
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\mathrm{2}{f}\left({a}\right)=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({arctanx}\right)}{{x}^{\mathrm{2}} \:+{a}}{dx}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{iarctan}\left({x}\right)} }{{x}^{\mathrm{2}} \:+{a}}{dx}\right) \\ $$$${let}\:\varphi\left({z}\right)\:=\frac{{e}^{{i}\:{arctan}\left({z}\right)} }{{z}^{\mathrm{2}} +{a}}\:\Rightarrow\varphi\left({z}\right)\:=\frac{{e}^{{iarctan}\left({z}\right)} }{\left({z}−{i}\sqrt{{a}}\right)\left({z}+{i}\sqrt{{a}}\right)}\:{residus}\:{theorem} \\ $$$${give}\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{i}\sqrt{{a}}\right) \\ $$$${Res}\left(\varphi,{i}\sqrt{{a}}\right)\:=\frac{{e}^{{iarctan}\left({i}\sqrt{{a}}\right)} }{\mathrm{2}{i}\sqrt{{a}}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{{e}^{{iarctan}\left({iz}\right)} }{\mathrm{2}{i}\sqrt{{a}}} \\ $$$$=\frac{\pi}{\:\sqrt{{a}}}\:\left\{{cos}\left({arctan}\left({iz}\right)\right)+{isin}\left({artan}\left({iz}\right)\right)\right\} \\ $$$${rest}\:{to}\:{find}\:{arctan}\left({iz}\right)\:\:…..{be}\:{continued}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *