Menu Close

1-T-t-1-t-2-Vsin-t-V-dt-t-1-and-t-2-are-solution-to-Vsin-t-V-V-V-V-0-and-t-1-lt-t-2-




Question Number 737 by 123456 last updated on 08/Mar/15
(1/T)∫_t_1  ^t_2  Vsin ωt−V_γ  dt=?  t_1  and t_2  are solution to  Vsin ωt=V_γ   V≥V_γ   V_γ ≥0  and t_1 <t_2
$$\frac{\mathrm{1}}{{T}}\underset{{t}_{\mathrm{1}} } {\overset{{t}_{\mathrm{2}} } {\int}}{V}\mathrm{sin}\:\omega{t}−{V}_{\gamma} \:{dt}=? \\ $$$${t}_{\mathrm{1}} \:{and}\:{t}_{\mathrm{2}} \:{are}\:{solution}\:{to} \\ $$$${V}\mathrm{sin}\:\omega{t}={V}_{\gamma} \\ $$$${V}\geqslant{V}_{\gamma} \\ $$$${V}_{\gamma} \geqslant\mathrm{0} \\ $$$${and}\:{t}_{\mathrm{1}} <{t}_{\mathrm{2}} \\ $$
Commented by prakash jain last updated on 08/Mar/15
Vsin ωt=V_γ   t_2 =t_1 +2πkT     ∵ω=((2π)/T)
$${V}\mathrm{sin}\:\omega{t}={V}_{\gamma} \\ $$$${t}_{\mathrm{2}} ={t}_{\mathrm{1}} +\mathrm{2}\pi{kT}\:\:\:\:\:\because\omega=\frac{\mathrm{2}\pi}{{T}} \\ $$
Answered by prakash jain last updated on 08/Mar/15
(1/T)∫Vsin ωt−V_γ dt  =(1/T)[−cos ωt−V_γ t]_t_1  ^t_2  =(V_γ /T)[t_1 −t_2 ]=(V_γ /T)(−((2πk)/T))  Since sin wt_1 =sin wt_2 ⇒cos ωt_1 =cos wt_2   The given integral=− ((2πk)/T^( 2) )V_γ  , k>0  V is assumed to be constant amplitude.
$$\frac{\mathrm{1}}{{T}}\int{V}\mathrm{sin}\:\omega{t}−{V}_{\gamma} {dt} \\ $$$$=\frac{\mathrm{1}}{{T}}\left[−\mathrm{cos}\:\omega{t}−{V}_{\gamma} {t}\right]_{{t}_{\mathrm{1}} } ^{{t}_{\mathrm{2}} } =\frac{{V}_{\gamma} }{{T}}\left[{t}_{\mathrm{1}} −{t}_{\mathrm{2}} \right]=\frac{{V}_{\gamma} }{{T}}\left(−\frac{\mathrm{2}\pi{k}}{{T}}\right) \\ $$$$\mathrm{Since}\:\mathrm{sin}\:{wt}_{\mathrm{1}} =\mathrm{sin}\:{wt}_{\mathrm{2}} \Rightarrow\mathrm{cos}\:\omega{t}_{\mathrm{1}} =\mathrm{cos}\:{wt}_{\mathrm{2}} \\ $$$$\mathrm{The}\:\mathrm{given}\:\mathrm{integral}=−\:\frac{\mathrm{2}\pi{k}}{{T}^{\:\mathrm{2}} }{V}_{\gamma} \:,\:{k}>\mathrm{0} \\ $$$${V}\:\mathrm{is}\:\mathrm{assumed}\:\mathrm{to}\:\mathrm{be}\:\mathrm{constant}\:\mathrm{amplitude}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *