Question Number 11838 by Peter last updated on 02/Apr/17
$$\frac{\mathrm{2}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}\:+\:\frac{\mathrm{3}^{\mathrm{2}} +\mathrm{1}}{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}\:+\:\frac{\mathrm{4}^{\mathrm{2}} +\mathrm{1}}{\mathrm{4}^{\mathrm{2}} −\mathrm{1}}\:+\:….\:+\:\frac{\mathrm{20}^{\mathrm{2}} +\mathrm{1}}{\mathrm{20}^{\mathrm{2}} −\mathrm{1}}\:=\:….? \\ $$
Answered by ajfour last updated on 02/Apr/17
$${T}_{{r}} =\:\frac{{r}^{\mathrm{2}} +\mathrm{1}}{{r}^{\mathrm{2}} −\mathrm{1}}\:=\:\frac{{r}^{\mathrm{2}} −\mathrm{1}+\mathrm{2}}{{r}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\:\:=\mathrm{1}+\frac{\mathrm{2}}{\left({r}−\mathrm{1}\right)\left({r}+\mathrm{1}\right)}\: \\ $$$$\:{T}_{{r}} \:=\:\mathrm{1}+\frac{\mathrm{1}}{\left({r}−\mathrm{1}\right)}−\frac{\mathrm{1}}{\left({r}+\mathrm{1}\right)} \\ $$$${S}=\:\underset{{r}=\mathrm{2}} {\overset{{r}=\mathrm{20}} {\sum}}{T}_{{r}} \\ $$$$\:\:\:\:=\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:+\left(\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\:\:\:\:\:\:+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}\right) \\ $$$$\:\:\:\:\:\:+\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{6}}\right) \\ $$$$\:\:\:\:\:\:\:+…. \\ $$$$\:\:\:…+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{17}}−\frac{\mathrm{1}}{\mathrm{19}}\right) \\ $$$$\:\:\:\:\:\:\:+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{18}}−\frac{\mathrm{1}}{\mathrm{20}}\right) \\ $$$$\:\:\:\:\:\:\:+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{19}}−\frac{\mathrm{1}}{\mathrm{21}}\right) \\ $$$${S}\:=\:\mathrm{19}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{21}} \\ $$$${S}=\:\mathrm{20}+\frac{\mathrm{169}}{\mathrm{420}}\:\:. \\ $$