Question Number 3411 by Filup last updated on 13/Dec/15

$$\mathrm{Can}\:\mathrm{someone}\:\mathrm{show}\:\mathrm{me}\:\mathrm{how}: \\ $$$$\left({i}\right)\:\:\:\:\left({x}+{a}\right)^{{v}} =\underset{{k}=\mathrm{0}} {\overset{{v}} {\sum}}\begin{pmatrix}{{v}}\\{{k}}\end{pmatrix}\:{x}^{{v}−{k}} {a}^{{k}} \\ $$$$\left({ii}\right)\:\:\mathrm{Does}: \\ $$$$\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{{v}} {\sum}}\begin{pmatrix}{{v}}\\{{k}}\end{pmatrix}\:{x}^{{v}−{k}} {a}^{{k}} =\underset{{k}=\mathrm{0}} {\overset{{v}} {\sum}}\begin{pmatrix}{{v}}\\{{k}}\end{pmatrix}\:{x}^{{k}} {a}^{{v}−{k}} \\ $$
Commented by RasheedSindhi last updated on 13/Dec/15

$$\begin{pmatrix}{{v}}\\{{k}}\end{pmatrix}\:\:\:{is}\:{defined}\:{in}\:{case}\:{k}\leqslant{v}\:{only} \\ $$$$\left({i}\right)\:\mathcal{C}{an}\:{be}\:{proved}\:{by}\:{mathematical} \\ $$$${induction}\:{if}\:{k}\leqslant{v}\:. \\ $$$$\left({ii}\right)\:{as}\:{x}+{a}={a}+{x} \\ $$$$\therefore\:\overset{{v}} {\underset{{k}=\mathrm{0}} {\sum}}\begin{pmatrix}{{v}}\\{{k}}\end{pmatrix}\:{x}^{{v}−{k}} {a}^{{k}} =\underset{{k}=\mathrm{0}} {\overset{{v}} {\sum}}\begin{pmatrix}{{v}}\\{{k}}\end{pmatrix}\:{x}^{{k}} {a}^{{v}−{k}} \\ $$$$\left({x}\:{and}\:{a}\:{are}\:{exchanged}\right) \\ $$$$ \\ $$
Commented by Filup last updated on 13/Dec/15

$$\mathrm{Thanks}.\:\mathrm{I}\:\mathrm{thought}\:\mathrm{as}\:\mathrm{much}\:\mathrm{for}\:\left({ii}\right). \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{anything}\:\mathrm{about}\: \\ $$$$\mathrm{mathematical}\:\mathrm{induction}. \\ $$
Commented by 123456 last updated on 13/Dec/15

$$\mathrm{in}\:\mathrm{some}\:\mathrm{places}\:\mathrm{its}\:\mathrm{defined}\:\mathrm{to}\:\mathrm{be}\:\mathrm{0} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}=\frac{{a}!}{{b}!\left({a}−{b}\right)!} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}=\mathrm{0},{a}<{b},{a}\in\mathbb{N},{b}\in\mathbb{N} \\ $$
Commented by RasheedSindhi last updated on 13/Dec/15

$$\mathcal{T}{his}\:{is}\:{knowledge}\:{for}\:{me}! \\ $$$${for}\:{a}={b}\:\:\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}\:=\mathrm{1}\:{or}\:\mathrm{0}? \\ $$
Commented by 123456 last updated on 13/Dec/15

$$\mathrm{1},\:\mathrm{i}\:\mathrm{aciddentaly}\:\mathrm{write}\:\mathrm{it}\:\mathrm{wrong} \\ $$
Commented by Filup last updated on 13/Dec/15

$$\begin{pmatrix}{{a}}\\{{a}}\end{pmatrix}\:=\:\frac{{a}!}{\left({a}−{a}\right)!\:{a}!} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}} \\ $$
Commented by Yozzi last updated on 13/Dec/15

$${There}\:{is}\:{also}\:{a}\:{combinatorical} \\ $$$${approach}\:{to}\:{proving}\:{the}\:{Binomial} \\ $$$${theorem}. \\ $$
Commented by 123456 last updated on 13/Dec/15
![for curiosity there some reaction to take ((a),(b) )=0 a∈N∧b∈Z∧(b<0∨b>a) we have ((a),(b) )=((a!)/(b!(a−b)!))=((Γ(a+1))/(Γ(b+1)Γ(a−b+1))) x!=Γ(x+1) the poles of Γ(x) are {...,−2,−1,0} so the poles of x! are {...,−3,−2,−1} so if b<0 we get a pole at b! if a<b⇒a−b<0 we get a pole at (a−b)! so its act like ((a!)/(x!(a−x)!))=(k_1 /(±∞k_2 ))=0 however this is if we take the result of limit as (a,b) lim_((x,y)→(a,b)) ((x),(y) ) you can also compute it for non intergers by gamma function ((1),((1/2)) )=((1!)/([(1/2)!]^2 ))=(4/π)](https://www.tinkutara.com/question/Q3431.png)
$$\mathrm{for}\:\mathrm{curiosity}\:\mathrm{there}\:\mathrm{some}\:\mathrm{reaction}\:\mathrm{to}\:\mathrm{take} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}=\mathrm{0}\:\:\:\:{a}\in\mathbb{N}\wedge{b}\in\mathbb{Z}\wedge\left({b}<\mathrm{0}\vee{b}>{a}\right) \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}=\frac{{a}!}{{b}!\left({a}−{b}\right)!}=\frac{\Gamma\left({a}+\mathrm{1}\right)}{\Gamma\left({b}+\mathrm{1}\right)\Gamma\left({a}−{b}+\mathrm{1}\right)} \\ $$$${x}!=\Gamma\left({x}+\mathrm{1}\right) \\ $$$$\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\Gamma\left({x}\right)\:\mathrm{are}\:\left\{…,−\mathrm{2},−\mathrm{1},\mathrm{0}\right\} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:{x}!\:\mathrm{are}\:\left\{…,−\mathrm{3},−\mathrm{2},−\mathrm{1}\right\} \\ $$$$\mathrm{so} \\ $$$$\mathrm{if}\:{b}<\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{pole}\:\mathrm{at}\:{b}! \\ $$$$\mathrm{if}\:{a}<{b}\Rightarrow{a}−{b}<\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{pole}\:\mathrm{at}\:\left({a}−{b}\right)! \\ $$$$\mathrm{so}\:\mathrm{its}\:\mathrm{act}\:\mathrm{like} \\ $$$$\frac{{a}!}{{x}!\left({a}−{x}\right)!}=\frac{{k}_{\mathrm{1}} }{\pm\infty{k}_{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{however}\:\mathrm{this}\:\mathrm{is}\:\mathrm{if}\:\mathrm{we}\:\mathrm{take}\:\mathrm{the}\:\mathrm{result}\:\mathrm{of} \\ $$$$\mathrm{limit}\:\mathrm{as}\:\left({a},{b}\right) \\ $$$$\underset{\left({x},{y}\right)\rightarrow\left({a},{b}\right)} {\mathrm{lim}}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{also}\:\mathrm{compute}\:\mathrm{it}\:\mathrm{for}\:\mathrm{non}\:\mathrm{intergers}\:\mathrm{by}\:\mathrm{gamma}\:\mathrm{function} \\ $$$$\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}/\mathrm{2}}\end{pmatrix}=\frac{\mathrm{1}!}{\left[\left(\mathrm{1}/\mathrm{2}\right)!\right]^{\mathrm{2}} }=\frac{\mathrm{4}}{\pi} \\ $$
Answered by 123456 last updated on 13/Dec/15

$$\mathrm{lets}\:\mathrm{shown}\:\left({x}+{a}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{n}−{k}} {a}^{{k}} \:\:\:{n}\in\mathbb{N} \\ $$$$\mathrm{base}\:\mathrm{case}: \\ $$$${n}=\mathrm{0} \\ $$$$\left({x}+{a}\right)^{\mathrm{0}} =\mathrm{1} \\ $$$${n}=\mathrm{1} \\ $$$$\left({x}+{a}\right)^{\mathrm{1}} ={x}+{a} \\ $$$$\mathrm{inductive}\:\mathrm{steep}: \\ $$$$\mathrm{assuming}\:\mathrm{its}\:\mathrm{truth}\:\mathrm{to}\:{n},\:\mathrm{let}\:\mathrm{shown}\:\mathrm{to} \\ $$$${n}+\mathrm{1} \\ $$$$\left({x}+{a}\right)^{{n}+\mathrm{1}} =\left({x}+{a}\right)\left({x}+{a}\right)^{{n}} \\ $$$$=\left({x}+{a}\right)\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{n}−{k}} {a}^{{k}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{n}+\mathrm{1}−{k}} {a}^{{k}} +\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{n}−{k}} {a}^{{k}+\mathrm{1}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{n}+\mathrm{1}−{k}} {a}^{{k}} +\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}\begin{pmatrix}{{n}}\\{{k}−\mathrm{1}}\end{pmatrix}{x}^{{n}+\mathrm{1}−{k}} {a}^{{k}} \\ $$$$={x}^{{n}+\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{n}+\mathrm{1}−{k}} {a}^{{k}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}−\mathrm{1}}\end{pmatrix}{x}^{{n}+\mathrm{1}−{k}} {a}^{{k}} +{a}^{{n}+\mathrm{1}} \\ $$$$={x}^{{n}+\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{{k}−\mathrm{1}}\end{pmatrix}\:\right){x}^{{n}+\mathrm{1}−{k}} {a}^{{k}} +{a}^{{n}+\mathrm{1}} \\ $$$$={x}^{{n}+\mathrm{1}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}+\mathrm{1}}\\{{k}}\end{pmatrix}{x}^{{n}+\mathrm{1}−{k}} {a}^{{k}} +{a}^{{n}+\mathrm{1}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}+\mathrm{1}} {\sum}}\begin{pmatrix}{{n}+\mathrm{1}}\\{{k}}\end{pmatrix}{x}^{{n}+\mathrm{1}−{k}} {a}^{{k}} \:\:\:\:\Box \\ $$$$\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{{k}−\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{{n}+\mathrm{1}}\\{{k}}\end{pmatrix} \\ $$
Commented by Yozzi last updated on 13/Dec/15

$${Proof}\:{of}\:\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{{k}−\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{{n}+\mathrm{1}}\\{{k}}\end{pmatrix}. \\ $$$${Suppose}\:{we}\:{a}\:{set}\:{of}\:{n}\:{distinct}\:{objects} \\ $$$${and}\:{we}\:{choose}\:{one}\:{object}\:{as}\:{a}\:{special}\: \\ $$$${one}.\:{Then},\:{the}\:{number}\:{of}\:{sets}\:{of} \\ $$$${k}\:{disinct}\:{objects}\:{is}\:{the}\:{sum}\:{of}\:{the}\: \\ $$$${number}\:{of}\:{sets}\:{with}\:{the}\:{special}\:{object}\:{and}\: \\ $$$${the}\:{number}\:{of}\:{sets}\:{without}\:{the}\:{special} \\ $$$${object}.\: \\ $$$${Given}\:{that}\:{we}\:{already}\:{took}\:{the}\:{special} \\ $$$${object},\:{we}\:{need}\:{k}−\mathrm{1}\:{objects}\:\left({to}\:{add}\:{to}\right. \\ $$$$\left.\mathrm{1}\:{to}\:{give}\:{k}\:{objects}\right)\:{from}\:{n}−\mathrm{1}\:{objects} \\ $$$$\left({we}\:{already}\:{took}\:\mathrm{1}\:{object}\right).\:{This}\:{occurs} \\ $$$${in}\:\begin{pmatrix}{{n}−\mathrm{1}}\\{{k}−\mathrm{1}}\end{pmatrix}\:{ways}\:{where}\:\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}\:{is}\:{the}\:{choose} \\ $$$${function}\:\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}=\frac{{p}!}{\left({p}−{q}\right)!{q}!}. \\ $$$${The}\:{number}\:{of}\:{sets}\:{without}\:{the}\:{special} \\ $$$${object}\:{occurs}\:{in}\:\begin{pmatrix}{{n}−\mathrm{1}}\\{{k}}\end{pmatrix}\:{ways}\:{since} \\ $$$${we}\:{have}\:{only}\:{n}−\mathrm{1}\:{objects}\:{to}\:{choose}\:{k} \\ $$$${objects}\:{from}\:{if}\:{the}\:{special}\:{object}\:{is} \\ $$$${not}\:{to}\:{be}\:{part}\:{of}\:{the}\:{set}. \\ $$$${So}\:{we}\:{have}\: \\ $$$$\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}=\begin{pmatrix}{{n}−\mathrm{1}}\\{{k}−\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{{n}−\mathrm{1}}\\{{k}}\end{pmatrix} \\ $$$$\Rightarrow\:{for}\:{a}\:{group}\:{of}\:{n}+\mathrm{1}\:{distinct}\:{objects} \\ $$$$\begin{pmatrix}{{n}+\mathrm{1}}\\{{k}}\end{pmatrix}=\begin{pmatrix}{{n}}\\{{k}−\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Box \\ $$$${We}\:{can}\:{likewise}\:{show}\:{that} \\ $$$$\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}=\begin{pmatrix}{{n}−\mathrm{1}}\\{{k}}\end{pmatrix}+\mathrm{2}\begin{pmatrix}{{n}−\mathrm{1}}\\{{k}−\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{{n}−\mathrm{1}}\\{{k}−\mathrm{2}}\end{pmatrix}\:,\:{n},{k}\in\mathbb{Z}^{\geqslant} \\ $$$${n}\geqslant{k}. \\ $$
Answered by Yozzi last updated on 13/Dec/15
![(x+a)^v =(a{1+(x/a)})^v (x+a)^v =a^v {1+(x/a)}^v Here, I assume that v∈Z^≥ . a≠0 (Z^≥ ={non−negative integers}) The choose function is given as ((n),(r) ) as the number of ways of choosing r objects from n distinct objects. Of course we have {1+(x/a)}^v =(1+(x/a))(1+(x/a))(1+(x/a))...(1+(x/a)) (v times) Here you have v brackets with (x/a) in each of them so that powers of (x/a) can arise in a number of ways as a consequence of picking brackets to multiply with each other to give the sought after power of (x/a). ((x/a))^v : To obtain this term, you have v brackets to choose (x/a) from and this is done in ((v),(v) ) ways. So, ((x/a))^v occurs ((v),(v) ) times and thus the term in ((x/a))^v is ((v),(v) )((x/a))^v . ((x/a))^(v−1) : Here it is the case that you′d like to obtain (x/a) multiplied by itself v−1 times. You have v brackets to choose from, so that this occurs in ((v),((v−1)) ) ways. Hence, the term in ((x/a))^(v−1) is ((v),((v−1)) ) ((x/a))^(v−1) . ((x/a))^(v−2) : This term arises in ((v),((v−2)) ) ways from among the brackets, so this term is ((v),((v−2)) )((x/a))^(v−2) . Continuing on, terms in ((x/a))^2 arise in ((v),(2) ) ways, terms in (x/a) arise in ((v),(1) ) ways and terms in ((x/a))^0 arise in ((v),(0) )=1 ways from among the brackets. We hence obtain in all, (x+a)^v =a^v [ ((v),(v) )((x/a))^v + ((v),((v−1)) )((x/a))^(v−1) + ((v),((v−2)) )((x/a))^(v−2) +...+ ((v),(2) )((x/a))^2 + ((v),(1) )((x/a)) +1] (x+a)^v =a^v (Σ_(r=0) ^v ((v),(r) )x^r a^(−r) ) (x+a)^v =Σ_(r=0) ^v ((v),(r) )x^r a^(v−r) □ If one approached the proof starting with ′The number of ways of obtaining the term ((a/x))^0 from {1+(a/x)}^v (x≠0) (after writting {x+a}^v =x^v (1+(a/x))^v ) is ((v),(0) )...′ you get the equivalent expression (x+a)^v =Σ_(r=0) ^v ((v),(r) )x^(v−r) a^r .](https://www.tinkutara.com/question/Q3432.png)
$$\left({x}+{a}\right)^{{v}} =\left({a}\left\{\mathrm{1}+\frac{{x}}{{a}}\right\}\right)^{{v}} \\ $$$$\left({x}+{a}\right)^{{v}} ={a}^{{v}} \left\{\mathrm{1}+\frac{{x}}{{a}}\right\}^{{v}} \: \\ $$$${Here},\:{I}\:{assume}\:{that}\:{v}\in\mathbb{Z}^{\geqslant} .\:{a}\neq\mathrm{0} \\ $$$$\left(\mathbb{Z}^{\geqslant} =\left\{{non}−{negative}\:{integers}\right\}\right) \\ $$$${The}\:{choose}\:{function}\:{is}\:{given}\:{as}\:\:\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix} \\ $$$${as}\:{the}\:{number}\:{of}\:{ways}\:{of}\:{choosing} \\ $$$${r}\:{objects}\:{from}\:{n}\:{distinct}\:{objects}. \\ $$$$ \\ $$$${Of}\:{course}\:{we}\:{have} \\ $$$$\left\{\mathrm{1}+\frac{{x}}{{a}}\right\}^{{v}} =\left(\mathrm{1}+\frac{{x}}{{a}}\right)\left(\mathrm{1}+\frac{{x}}{{a}}\right)\left(\mathrm{1}+\frac{{x}}{{a}}\right)…\left(\mathrm{1}+\frac{{x}}{{a}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({v}\:{times}\right) \\ $$$${Here}\:{you}\:{have}\:{v}\:{brackets}\:{with}\:\frac{{x}}{{a}}\:{in} \\ $$$${each}\:{of}\:{them}\:{so}\:{that}\:{powers}\:{of}\:\frac{{x}}{{a}}\: \\ $$$${can}\:{arise}\:{in}\:{a}\:{number}\:{of}\:{ways}\:{as}\:{a} \\ $$$${consequence}\:{of}\:{picking}\:{brackets}\:{to}\: \\ $$$${multiply}\:{with}\:{each}\:{other}\:{to}\:{give}\:{the} \\ $$$${sought}\:{after}\:{power}\:{of}\:\frac{{x}}{{a}}. \\ $$$$\left(\frac{{x}}{{a}}\right)^{{v}} :\:{To}\:{obtain}\:{this}\:{term},\:{you}\:{have} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{v}\:{brackets}\:{to}\:{choose}\:\frac{{x}}{{a}}\:{from}\:{and} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{this}\:{is}\:{done}\:{in}\:\begin{pmatrix}{{v}}\\{{v}}\end{pmatrix}\:{ways}.\:{So}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{{x}}{{a}}\right)^{{v}} {occurs}\:\begin{pmatrix}{{v}}\\{{v}}\end{pmatrix}\:{times}\:{and}\:{thus} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{the}\:{term}\:{in}\:\left(\frac{{x}}{{a}}\right)^{{v}} \:{is}\:\begin{pmatrix}{{v}}\\{{v}}\end{pmatrix}\left(\frac{{x}}{{a}}\right)^{{v}} . \\ $$$$\left(\frac{{x}}{{a}}\right)^{{v}−\mathrm{1}} :\:{Here}\:{it}\:{is}\:{the}\:{case}\:{that}\:{you}'{d} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{like}\:{to}\:{obtain}\:\frac{{x}}{{a}}\:{multiplied} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{by}\:{itself}\:{v}−\mathrm{1}\:{times}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{You}\:{have}\:{v}\:{brackets}\:{to}\:{choose} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{from},\:{so}\:{that}\:{this}\:{occurs} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{in}\:\begin{pmatrix}{{v}}\\{{v}−\mathrm{1}}\end{pmatrix}\:{ways}.\:{Hence},\:{the}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{term}\:{in}\:\left(\frac{{x}}{{a}}\right)^{{v}−\mathrm{1}} \:\:{is}\:\begin{pmatrix}{{v}}\\{{v}−\mathrm{1}}\end{pmatrix}\:\left(\frac{{x}}{{a}}\right)^{{v}−\mathrm{1}} . \\ $$$$\left(\frac{{x}}{{a}}\right)^{{v}−\mathrm{2}} :\:{This}\:{term}\:{arises}\:{in}\:\begin{pmatrix}{{v}}\\{{v}−\mathrm{2}}\end{pmatrix}\:{ways} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{from}\:{among}\:{the}\:{brackets},\:{so} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{this}\:{term}\:{is}\:\begin{pmatrix}{{v}}\\{{v}−\mathrm{2}}\end{pmatrix}\left(\frac{{x}}{{a}}\right)^{{v}−\mathrm{2}} . \\ $$$${Continuing}\:{on},\:{terms}\:{in}\:\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} \: \\ $$$${arise}\:{in}\:\:\begin{pmatrix}{{v}}\\{\mathrm{2}}\end{pmatrix}\:{ways},\:{terms}\:{in}\:\frac{{x}}{{a}}\:{arise} \\ $$$${in}\:\begin{pmatrix}{{v}}\\{\mathrm{1}}\end{pmatrix}\:{ways}\:{and}\:{terms}\:{in}\:\left(\frac{{x}}{{a}}\right)^{\mathrm{0}} \:{arise} \\ $$$${in}\:\begin{pmatrix}{{v}}\\{\mathrm{0}}\end{pmatrix}=\mathrm{1}\:{ways}\:{from}\:{among}\:{the}\:{brackets}. \\ $$$${We}\:{hence}\:{obtain}\:{in}\:{all}, \\ $$$$\left({x}+{a}\right)^{{v}} ={a}^{{v}} \left[\begin{pmatrix}{{v}}\\{{v}}\end{pmatrix}\left(\frac{{x}}{{a}}\right)^{{v}} +\begin{pmatrix}{{v}}\\{{v}−\mathrm{1}}\end{pmatrix}\left(\frac{{x}}{{a}}\right)^{{v}−\mathrm{1}} \right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\begin{pmatrix}{{v}}\\{{v}−\mathrm{2}}\end{pmatrix}\left(\frac{{x}}{{a}}\right)^{{v}−\mathrm{2}} +…+\begin{pmatrix}{{v}}\\{\mathrm{2}}\end{pmatrix}\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\begin{pmatrix}{{v}}\\{\mathrm{1}}\end{pmatrix}\left(\frac{{x}}{{a}}\right) \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{1}\right] \\ $$$$\left({x}+{a}\right)^{{v}} ={a}^{{v}} \left(\underset{{r}=\mathrm{0}} {\overset{{v}} {\sum}}\begin{pmatrix}{{v}}\\{{r}}\end{pmatrix}{x}^{{r}} {a}^{−{r}} \right) \\ $$$$\left({x}+{a}\right)^{{v}} =\underset{{r}=\mathrm{0}} {\overset{{v}} {\sum}}\begin{pmatrix}{{v}}\\{{r}}\end{pmatrix}{x}^{{r}} {a}^{{v}−{r}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Box \\ $$$${If}\:{one}\:{approached}\:{the}\:{proof}\:{starting} \\ $$$${with}\:'{The}\:{number}\:{of}\:{ways}\:{of}\:{obtaining} \\ $$$${the}\:{term}\:\left(\frac{{a}}{{x}}\right)^{\mathrm{0}} \:{from}\:\left\{\mathrm{1}+\frac{{a}}{{x}}\right\}^{{v}} \:\left({x}\neq\mathrm{0}\right) \\ $$$$\left({after}\:{writting}\:\left\{{x}+{a}\right\}^{{v}} ={x}^{{v}} \left(\mathrm{1}+\frac{{a}}{{x}}\right)^{{v}} \right) \\ $$$${is}\:\:\begin{pmatrix}{{v}}\\{\mathrm{0}}\end{pmatrix}…'\:{you}\:{get}\:{the}\:{equivalent}\: \\ $$$${expression} \\ $$$$\left({x}+{a}\right)^{{v}} =\underset{{r}=\mathrm{0}} {\overset{{v}} {\sum}}\begin{pmatrix}{{v}}\\{{r}}\end{pmatrix}{x}^{{v}−{r}} {a}^{{r}} . \\ $$
Answered by prakash jain last updated on 13/Dec/15

$${f}\left({x}\right)=\left({x}+{a}\right)^{{n}} \\ $$$${f}\:'\left({x}\right)={n}\left({x}+{a}\right)^{{n}−\mathrm{1}} \\ $$$${f}^{\left(\mathrm{2}\right)} \left({x}\right)={n}\left({n}−\mathrm{1}\right)\left({x}+{a}\right)^{{n}−\mathrm{2}} \\ $$$${f}^{\left({n}\right)} \left({x}\right)={n}! \\ $$$${f}^{\left({k}\right)} \left({x}\right)=\mathrm{0},\:{k}>{n} \\ $$$$\mathrm{Taylor}\:\mathrm{series} \\ $$$${f}\left({x}\right)={a}^{{n}} +\frac{{n}}{\mathrm{1}!}{x}+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +…+\frac{{n}!}{{n}!}{x}^{{n}} +\mathrm{0}{x}^{{n}+\mathrm{1}} +.. \\ $$$$\left({x}+{a}\right)^{{n}} =\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\:^{{n}} {C}_{{i}} {x}^{{i}} {a}^{{n}−{i}} \\ $$