Menu Close

Given-that-S-n-a-1-r-n-1-r-r-1-show-that-S-3n-S-2n-S-n-r-2n-hence-given-that-r-1-2-find-n-0-S-3n-S-2n-S-n-




Question Number 66107 by Rio Michael last updated on 09/Aug/19
Given that S_n  = ((a(1 −r^n ))/(1−r)) , r ≠ 1, show that ((S_(3n)  −S_(2n) )/(S_n  )) = r^(2n)   hence given that r =(1/2) find Σ_(n=0) ^∞ (((S_(3n)  −S_(2n) )/S_n ))
$${Given}\:{that}\:{S}_{{n}} \:=\:\frac{{a}\left(\mathrm{1}\:−{r}^{{n}} \right)}{\mathrm{1}−{r}}\:,\:{r}\:\neq\:\mathrm{1},\:{show}\:{that}\:\frac{{S}_{\mathrm{3}{n}} \:−{S}_{\mathrm{2}{n}} }{{S}_{{n}} \:}\:=\:{r}^{\mathrm{2}{n}} \\ $$$${hence}\:{given}\:{that}\:{r}\:=\frac{\mathrm{1}}{\mathrm{2}}\:{find}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{{S}_{\mathrm{3}{n}} \:−{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\right) \\ $$
Commented by Prithwish sen last updated on 09/Aug/19
((S_(3n) −S_(2n) )/S_n ) = ((1−r^(3n) −1+r^(2n) )/(1−r^n )) = ((r^(2n) (1−r^n ))/((1−r^n ))) = r^(2n)   Σ_(n=0) ^∞ r^(2n) =((1/2))^0 +((1/2))^2 +((1/2))^4 +..... = (1/(1−(1/4))) = (4/3)  please check.
$$\frac{\mathrm{S}_{\mathrm{3n}} −\mathrm{S}_{\mathrm{2n}} }{\mathrm{S}_{\mathrm{n}} }\:=\:\frac{\mathrm{1}−\mathrm{r}^{\mathrm{3n}} −\mathrm{1}+\mathrm{r}^{\mathrm{2n}} }{\mathrm{1}−\mathrm{r}^{\mathrm{n}} }\:=\:\frac{\mathrm{r}^{\mathrm{2n}} \left(\mathrm{1}−\mathrm{r}^{\mathrm{n}} \right)}{\left(\mathrm{1}−\mathrm{r}^{\mathrm{n}} \right)}\:=\:\mathrm{r}^{\mathrm{2n}} \\ $$$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{r}^{\mathrm{2n}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{0}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} +…..\:=\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}\:=\:\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\mathrm{please}\:\mathrm{check}. \\ $$
Commented by Rio Michael last updated on 09/Aug/19
correct sir thanks
$${correct}\:{sir}\:{thanks} \\ $$
Commented by mathmax by abdo last updated on 10/Aug/19
we have ((S_(3n) −S_(2n) )/S_n ) =((a(1−r^(3n) )−a(1−r^(2n) ))/(a(1−r^n ))) =((r^(2n) −r^(3n) )/(1−r^n ))  =((r^(2n) (1−r^n ))/(1−r^n )) =r^(2n)    with r≠1  ⇒Σ_(n=0) ^∞  ((S_(3n) −S_(2n) )/S_n ) =Σ_(n=0) ^∞  r^(2n)  =((1−r^(2(n+1)) )/(1−r^2 ))  and for ∣r∣<1    we get Σ_(n=0) ^∞  r^(2n)  =(1/(1−r^2 )) ⇒  Σ_(n=0) ^∞  ((S_(3n) −S_(2n) )/S_n ) =(1/(1−((1/4)))) =(4/3)
$${we}\:{have}\:\frac{{S}_{\mathrm{3}{n}} −{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\:=\frac{{a}\left(\mathrm{1}−{r}^{\mathrm{3}{n}} \right)−{a}\left(\mathrm{1}−{r}^{\mathrm{2}{n}} \right)}{{a}\left(\mathrm{1}−{r}^{{n}} \right)}\:=\frac{{r}^{\mathrm{2}{n}} −{r}^{\mathrm{3}{n}} }{\mathrm{1}−{r}^{{n}} } \\ $$$$=\frac{{r}^{\mathrm{2}{n}} \left(\mathrm{1}−{r}^{{n}} \right)}{\mathrm{1}−{r}^{{n}} }\:={r}^{\mathrm{2}{n}} \:\:\:{with}\:{r}\neq\mathrm{1} \\ $$$$\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{S}_{\mathrm{3}{n}} −{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{\mathrm{2}{n}} \:=\frac{\mathrm{1}−{r}^{\mathrm{2}\left({n}+\mathrm{1}\right)} }{\mathrm{1}−{r}^{\mathrm{2}} } \\ $$$${and}\:{for}\:\mid{r}\mid<\mathrm{1}\:\:\:\:{we}\:{get}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{\mathrm{2}{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{r}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{S}_{\mathrm{3}{n}} −{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\:=\frac{\mathrm{1}}{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\:=\frac{\mathrm{4}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *