# Given-that-the-binomial-expansion-of-2-kx-2-5x-2-x-lt-2-5-in-ascending-powers-of-x-is-1-2-7-4-x-Ax-2-find-the-values-of-A-and-k-

Question Number 66108 by Rio Michael last updated on 09/Aug/19
$${Given}\:{that}\:{the}\:{binomial}\:{expansion}\:{of}\:\frac{\mathrm{2}\:+\:{kx}}{\left(\mathrm{2}−\mathrm{5}{x}\right)^{\mathrm{2}\:} }\:,\:\mid{x}\mid\:<\:\frac{\mathrm{2}}{\mathrm{5}\:}\:,{in}\:{ascending} \\$$$${powers}\:{of}\:{x}\:{is}\:\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{7}}{\mathrm{4}}{x}\:+\:{Ax}^{\mathrm{2}} \:+\:…,\:{find}\:{the}\:{values}\:{of}\:{A}\:{and}\:{k} \\$$
Commented by mr W last updated on 09/Aug/19
$${sir},\:{please}\:{change}\:{your}\:{style}\:{for}\:{your} \\$$$${posts}\:{such}\:{that}\:{they}\:{can}\:{be}\:{read}\: \\$$$${without}\:{horizontal}\:{scrolling}.\:{thanks}! \\$$
Commented by mr W last updated on 09/Aug/19
Commented by mr W last updated on 09/Aug/19
$${you}\:{can}\:{see}\:{the}\:{difference}\:{between} \\$$$${your}\:{post}\:{and}\:{my}\:{post}. \\$$
Commented by Rio Michael last updated on 09/Aug/19
$${okay}\:{i}'{ll}\:{check}\:{it}\:{thanks} \\$$$$\\$$