Menu Close

If-asin-1-x-bcos-1-x-c-then-the-value-of-asin-1-x-bcos-1-x-whenever-exists-is-equal-to-




Question Number 131296 by EDWIN88 last updated on 03/Feb/21
 If asin^(−1) (x)−bcos^(−1) (x)= c   then the value of asin^(−1) (x)+bcos^(−1) (x)   (whenever exists) is equal to ?
$$\:{If}\:{a}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)−{b}\mathrm{cos}^{−\mathrm{1}} \left({x}\right)=\:{c}\: \\ $$$${then}\:{the}\:{value}\:{of}\:{a}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)+{b}\mathrm{cos}^{−\mathrm{1}} \left({x}\right)\: \\ $$$$\left({whenever}\:{exists}\right)\:{is}\:{equal}\:{to}\:? \\ $$
Answered by liberty last updated on 03/Feb/21
We have sin^(−1) (x)+cos^(−1) (x)=(π/2)  then bsin^(−1) (x)+bcos^(−1) (x)= ((bπ)/2)...(i)            asin^(−1) (x)−bcos^(−1) (x)= c ...(ii)   ∴ on adding (i) and (ii) we get    sin^(−1) (x)= ((((bπ)/2) + c)/(a+b)) and cos^(−1) (x)=((((aπ)/2)−c)/(a+b))  Therefore asin^(−1) (x)+bcos^(−1) (x)= ((πab+c(a−b))/(a+b))
$$\mathrm{We}\:\mathrm{have}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)+\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{bsin}^{−\mathrm{1}} \left(\mathrm{x}\right)+\mathrm{bcos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\:\frac{\mathrm{b}\pi}{\mathrm{2}}…\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{asin}^{−\mathrm{1}} \left(\mathrm{x}\right)−\mathrm{bcos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\:\mathrm{c}\:…\left(\mathrm{ii}\right) \\ $$$$\:\therefore\:\mathrm{on}\:\mathrm{adding}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right)\:\mathrm{we}\:\mathrm{get}\: \\ $$$$\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)=\:\frac{\frac{\mathrm{b}\pi}{\mathrm{2}}\:+\:\mathrm{c}}{\mathrm{a}+\mathrm{b}}\:\mathrm{and}\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\frac{\mathrm{a}\pi}{\mathrm{2}}−\mathrm{c}}{\mathrm{a}+\mathrm{b}} \\ $$$$\mathrm{Therefore}\:\mathrm{asin}^{−\mathrm{1}} \left(\mathrm{x}\right)+\mathrm{bcos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\:\frac{\pi\mathrm{ab}+\mathrm{c}\left(\mathrm{a}−\mathrm{b}\right)}{\mathrm{a}+\mathrm{b}} \\ $$
Commented by EDWIN88 last updated on 03/Feb/21
  sehr interessante Erklrung Sir
$$ \\ $$$$\mathrm{sehr}\:\mathrm{interessante}\:\mathrm{Erklrung}\:\mathrm{Sir}\: \\ $$
Answered by mr W last updated on 03/Feb/21
t=sin^(−1) x  (π/2)−t=cos^(−1) x  asin^(−1) (x)−bcos^(−1) (x)=c  ⇒at−b((π/2)−t)=c  ⇒(a+b)t=c+((bπ)/2)  ⇒t=(1/(a+b))(c+((bπ)/2))  asin^(−1) (x)+bcos^(−1) (x)   =at+b((π/2)−t)  =(a−b)t+((bπ)/2)  =((a−b)/(a+b))(c+((bπ)/2))+((bπ)/2)  =(((a−b)c+abπ)/(a+b))
$${t}=\mathrm{sin}^{−\mathrm{1}} {x} \\ $$$$\frac{\pi}{\mathrm{2}}−{t}=\mathrm{cos}^{−\mathrm{1}} {x} \\ $$$${a}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)−{b}\mathrm{cos}^{−\mathrm{1}} \left({x}\right)={c} \\ $$$$\Rightarrow{at}−{b}\left(\frac{\pi}{\mathrm{2}}−{t}\right)={c} \\ $$$$\Rightarrow\left({a}+{b}\right){t}={c}+\frac{{b}\pi}{\mathrm{2}} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{{a}+{b}}\left({c}+\frac{{b}\pi}{\mathrm{2}}\right) \\ $$$${a}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)+{b}\mathrm{cos}^{−\mathrm{1}} \left({x}\right)\: \\ $$$$={at}+{b}\left(\frac{\pi}{\mathrm{2}}−{t}\right) \\ $$$$=\left({a}−{b}\right){t}+\frac{{b}\pi}{\mathrm{2}} \\ $$$$=\frac{{a}−{b}}{{a}+{b}}\left({c}+\frac{{b}\pi}{\mathrm{2}}\right)+\frac{{b}\pi}{\mathrm{2}} \\ $$$$=\frac{\left({a}−{b}\right){c}+{ab}\pi}{{a}+{b}} \\ $$
Commented by EDWIN88 last updated on 03/Feb/21
nice
$${nice} \\ $$