Menu Close

If-n-p-q-Z-and-p-and-q-are-coprimes-then-prove-that-HCF-of-n-p-1-and-n-q-1-is-n-1-Assume-n-gt-1-




Question Number 3296 by prakash jain last updated on 09/Dec/15
If n,p,q∈Z^+  and p and q are coprimes,  then prove that HCF of (n^p −1) and (n^q −1) is (n−1).  Assume n>1.
$$\mathrm{If}\:{n},{p},{q}\in\mathbb{Z}^{+} \:\mathrm{and}\:{p}\:\mathrm{and}\:{q}\:\mathrm{are}\:\mathrm{coprimes}, \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{HCF}\:\mathrm{of}\:\left({n}^{{p}} −\mathrm{1}\right)\:\mathrm{and}\:\left({n}^{{q}} −\mathrm{1}\right)\:\mathrm{is}\:\left({n}−\mathrm{1}\right). \\ $$$$\mathrm{Assume}\:{n}>\mathrm{1}. \\ $$
Commented by Rasheed Soomro last updated on 10/Dec/15
This means   ((n^p −1)/(n−1))  and   ((n^q −1)/(n−1)) are coprime.  I−E    If  any   d ∣ ((n^p −1)/(n−1)) then d ∤ ((n^q −1)/(n−1))       d>1
$$\mathcal{T}{his}\:{means}\:\:\:\frac{{n}^{{p}} −\mathrm{1}}{{n}−\mathrm{1}}\:\:{and}\:\:\:\frac{{n}^{{q}} −\mathrm{1}}{{n}−\mathrm{1}}\:{are}\:{coprime}. \\ $$$${I}−{E}\:\:\:\:{If}\:\:{any}\:\:\:{d}\:\mid\:\frac{{n}^{{p}} −\mathrm{1}}{{n}−\mathrm{1}}\:{then}\:{d}\:\nmid\:\frac{{n}^{{q}} −\mathrm{1}}{{n}−\mathrm{1}}\:\:\:\:\:\:\:{d}>\mathrm{1} \\ $$
Commented by prakash jain last updated on 10/Dec/15
Yes.
$$\mathrm{Yes}. \\ $$
Commented by Rasheed Soomro last updated on 10/Dec/15
Easily can be shown that  (n−1)∣ (n^p −1)   ∧   (n−1)∣ (n^q −1)  i e n−1 is a common divisor.  Now we have to prove that any number greater than  n−1 can′t divide both.  Let k > 0  and k∈N ⇒n+k−1>n−1  We have to prove:        n^p −1≇0 (mod n+k−1) ∧ n^p −1≇0 (mod n+k−1)  ∵ k∈ N   therfore perhsps mathematical induction   could help.
$$\mathcal{E}{asily}\:{can}\:{be}\:{shown}\:{that} \\ $$$$\left({n}−\mathrm{1}\right)\mid\:\left({n}^{{p}} −\mathrm{1}\right)\:\:\:\wedge\:\:\:\left({n}−\mathrm{1}\right)\mid\:\left({n}^{{q}} −\mathrm{1}\right) \\ $$$${i}\:{e}\:{n}−\mathrm{1}\:{is}\:{a}\:{common}\:{divisor}. \\ $$$$\mathcal{N}{ow}\:{we}\:{have}\:{to}\:{prove}\:{that}\:{any}\:{number}\:{greater}\:{than} \\ $$$${n}−\mathrm{1}\:{can}'{t}\:{divide}\:{both}. \\ $$$${Let}\:{k}\:>\:\mathrm{0}\:\:{and}\:{k}\in\mathbb{N}\:\Rightarrow{n}+{k}−\mathrm{1}>{n}−\mathrm{1} \\ $$$${We}\:{have}\:{to}\:{prove}: \\ $$$$\:\:\:\:\:\:{n}^{{p}} −\mathrm{1}\ncong\mathrm{0}\:\left({mod}\:{n}+{k}−\mathrm{1}\right)\:\wedge\:{n}^{{p}} −\mathrm{1}\ncong\mathrm{0}\:\left({mod}\:{n}+{k}−\mathrm{1}\right) \\ $$$$\because\:{k}\in\:\mathbb{N}\:\:\:{therfore}\:{perhsps}\:{mathematical}\:{induction}\: \\ $$$${could}\:{help}. \\ $$
Answered by prakash jain last updated on 11/Dec/15
After removing common factor (n−1).  A=Σ_(j=1) ^p n^(j−1) , B=Σ_(j=1) ^q n^(j−1)   Let us say d>1 is common factor in A and B.  clearly d ∤ n since in that (A/d)∈N will imply  (1/d)∈N.    let us assume p>q.  since d divides B=Σ_(j=1) ^q n^(j−1)  there exists k≤q  such that d divides Σ_(j=1) ^k n^(j−1) , let us smallest  value of k for which d divides Σ_(j=1) ^k n^(j−1)  is i.  Clearly i>1.    if q=mi+r, r<i  B=Σ_(j=1) ^(mi+r) n^(j−1) =Σ_(x=0) ^(m−1) n^(xi)  [Σ_(j=1) ^i n^(j−1) ]+n^(mi) Σ_(j=1) ^r n^(j−1)   if d divides B then d divides n^(mi) Σ_(j=1) ^r n^(j−1)  since  d∤n^(mi)  ⇒ d divides Σ_(j=1) ^r n^(j−1)      Sincd r<i, it contradicts  that  i is the smallest value for k  where Σ_(j=1) ^k n^(j−1)   is divisible by d. So r must be equal to 0.  ⇒q=mi    similarly p=ki  So i>1 is common factor between q and p.  contradicts p and q are coprime.  hence no common factor between A and B.
$$\mathrm{After}\:\mathrm{removing}\:\mathrm{common}\:\mathrm{factor}\:\left({n}−\mathrm{1}\right). \\ $$$${A}=\underset{{j}=\mathrm{1}} {\overset{{p}} {\sum}}{n}^{{j}−\mathrm{1}} ,\:{B}=\underset{{j}=\mathrm{1}} {\overset{{q}} {\sum}}{n}^{{j}−\mathrm{1}} \\ $$$$\mathrm{Let}\:\mathrm{us}\:\mathrm{say}\:{d}>\mathrm{1}\:\mathrm{is}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{in}\:{A}\:{and}\:{B}. \\ $$$$\mathrm{clearly}\:{d}\:\nmid\:{n}\:\mathrm{since}\:\mathrm{in}\:\mathrm{that}\:\frac{{A}}{{d}}\in\mathbb{N}\:\mathrm{will}\:\mathrm{imply} \\ $$$$\frac{\mathrm{1}}{{d}}\in\mathbb{N}. \\ $$$$ \\ $$$${let}\:{us}\:{assume}\:{p}>{q}. \\ $$$${since}\:{d}\:\mathrm{divides}\:{B}=\underset{{j}=\mathrm{1}} {\overset{{q}} {\sum}}{n}^{{j}−\mathrm{1}} \:\mathrm{there}\:\mathrm{exists}\:{k}\leqslant{q} \\ $$$$\mathrm{such}\:\mathrm{that}\:{d}\:\mathrm{divides}\:\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}{n}^{{j}−\mathrm{1}} ,\:\mathrm{let}\:\mathrm{us}\:\mathrm{smallest} \\ $$$$\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{for}\:\mathrm{which}\:{d}\:\mathrm{divides}\:\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}{n}^{{j}−\mathrm{1}} \:\mathrm{is}\:{i}. \\ $$$$\mathrm{Clearly}\:{i}>\mathrm{1}. \\ $$$$ \\ $$$${if}\:{q}={mi}+{r},\:{r}<{i} \\ $$$${B}=\underset{{j}=\mathrm{1}} {\overset{{mi}+{r}} {\sum}}{n}^{{j}−\mathrm{1}} =\underset{{x}=\mathrm{0}} {\overset{{m}−\mathrm{1}} {\sum}}{n}^{{xi}} \:\left[\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}{n}^{{j}−\mathrm{1}} \right]+{n}^{{mi}} \underset{{j}=\mathrm{1}} {\overset{{r}} {\sum}}{n}^{{j}−\mathrm{1}} \\ $$$${if}\:{d}\:{divides}\:{B}\:\mathrm{then}\:{d}\:{divides}\:{n}^{{mi}} \underset{{j}=\mathrm{1}} {\overset{{r}} {\sum}}{n}^{{j}−\mathrm{1}} \:{since} \\ $$$${d}\nmid{n}^{{mi}} \:\Rightarrow\:{d}\:{divides}\:\underset{{j}=\mathrm{1}} {\overset{{r}} {\sum}}{n}^{{j}−\mathrm{1}} \: \\ $$$$ \\ $$$$\mathrm{Sincd}\:{r}<{i},\:\mathrm{it}\:\mathrm{contradicts}\:\:\mathrm{that} \\ $$$${i}\:\mathrm{is}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{for}\:{k}\:\:\mathrm{where}\:\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}{n}^{{j}−\mathrm{1}} \\ $$$$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:{d}.\:\mathrm{So}\:{r}\:\mathrm{must}\:\mathrm{be}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{0}. \\ $$$$\Rightarrow{q}={mi} \\ $$$$ \\ $$$${similarly}\:{p}={ki} \\ $$$$\mathrm{So}\:{i}>\mathrm{1}\:\mathrm{is}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{between}\:{q}\:\mathrm{and}\:{p}. \\ $$$${contradicts}\:{p}\:{and}\:{q}\:\mathrm{are}\:\mathrm{coprime}. \\ $$$$\mathrm{hence}\:\mathrm{no}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{between}\:{A}\:\mathrm{and}\:{B}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *