Menu Close

Let-A-0-tan-x-2-tan-x-2-0-and-I-is-the-identity-matrix-of-order-2-Show-that-I-A-I-A-cos-x-sin-x-sin-x-cos-x-




Question Number 9 by user1 last updated on 25/Jan/15
Let A= [((   0),(−tan(x/2))),((tan(x/2)),(          0)) ] and I is the  identity matrix of order 2. Show that   (I+A)=(I−A)∙ [((cos x),(−sin x)),((sin x),(    cos x)) ].
LetA=[0tanx2tanx20]andIistheidentitymatrixoforder2.Showthat(I+A)=(IA)[cosxsinxsinxcosx].
Answered by user1 last updated on 30/Oct/14
Let    tan (x/2)=t  Then,  cos x=((1−tan^2  (x/2))/(1+tan^2  (x/2)))=((1−t^2 )/(1+t^2 ))  and   sin x=((2tan (x/2))/(1+tan^2  (x/2)))=((2t)/(1+t^2 ))  ∴  (I+A)= [(1,0),(0,1) ]+ [(0,(−t)),(t,(    0)) ]= [(1,(−t)),(t,(    1)) ]     (I−A)= [(1,0),(0,1) ]− [(0,(−t)),(t,(    0)) ]= [((    1),t),((−t),1) ]  ∴(I−A)∙ [((cos x),(−sin x)),((sin x),(    cos x)) ]  = [((    1),t),((−t),1) ] [(((1−t^2 )/(1+t^2 )),((−2t)/(1+t^2 ))),(((2t)/(1+t^2 )),((1−t^2 )/(1+t^2 ))) ]  = [((  ((1−t^2 )/(1+t^2 ))+((2t^2 )/(1+t^2 ))),( ((−2t)/(1+t^2 ))+((t(1−t^2 ))/(1+t^2 )))),((((−t(1−t^2 ))/(1+t^(2 ) ))+((2t)/(1+t^2 ))),(   ((2t^2 )/(1+t^2 ))+((1−t^2 )/(1+t^(2 ) )))) ]  = [(1,(−t)),(t,(    1)) ]=(I+A)  Hence,  (I+A)=(I−A) [((cos x),(−sin x)),((sin x),(    cos x)) ]
Lettanx2=tThen,cosx=1tan2x21+tan2x2=1t21+t2andsinx=2tanx21+tan2x2=2t1+t2(I+A)=[1001]+[0tt0]=[1tt1](IA)=[1001][0tt0]=[1tt1](IA)[cosxsinxsinxcosx]=[1tt1][1t21+t22t1+t22t1+t21t21+t2]=[1t21+t2+2t21+t22t1+t2+t(1t2)1+t2t(1t2)1+t2+2t1+t22t21+t2+1t21+t2]=[1tt1]=(I+A)Hence,(I+A)=(IA)[cosxsinxsinxcosx]