Menu Close

nice-calculus-prove-that-i-0-cos-pix-e-2pi-x-1-dx-2-2-8-ii-compute-n-1-n-4-9n-2-10-




Question Number 134272 by mnjuly1970 last updated on 01/Mar/21
               nice   calculus      prove that: :                 i ::   =∫_0 ^( ∞) ((cos(πx))/(e^(2π(√x) ) −1)) dx=((2−(√2) )/8)                 ii:: compute:  Σ_(n=−∞) ^∞ (1/(n^4 +9n^2 +10)) =?                               ...m.n...
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{nice}\:\:\:\mathrm{calculus} \\ $$$$\:\:\:\:\mathrm{prove}\:\mathrm{that}:\::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{i}\:::\:\: =\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left(\pi{x}\right)}{{e}^{\mathrm{2}\pi\sqrt{{x}}\:} −\mathrm{1}}\:{dx}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}\:}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ii}::\:{compute}:\:\:\underset{{n}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} +\mathrm{9}{n}^{\mathrm{2}} +\mathrm{10}}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{m}.{n}… \\ $$
Answered by Dwaipayan Shikari last updated on 01/Mar/21
Commented by Dwaipayan Shikari last updated on 01/Mar/21
Ramanujan′s letter
$${Ramanujan}'{s}\:{letter}\: \\ $$
Commented by mnjuly1970 last updated on 02/Mar/21
  thank you..
$$\:\:{thank}\:{you}.. \\ $$
Answered by Dwaipayan Shikari last updated on 01/Mar/21
Σ_(n=−∞) ^∞ (1/(n^4 +9n^2 +10))=(1/(10))+2Σ_(n=1) ^∞ (1/(n^4 +9n^2 +10))  =(1/(10))+(2/( (√(41))))Σ_(n=1) ^∞ (1/((n^2 +((9−(√(41)))/2))))−(1/((n^2 +((9+(√(41)))/2))))  =(1/(10))+(√(2/(41)))((π/( (√(9−(√(41))))))coth((√((9−(√(41)))/2))π)−(π/( (√(9+(√(41))))))coth((√((9+(√(41)))/2))π))+(2/( (√(41))))((1/(9+(√(41))))−(1/(9−(√(41)))))  =(√(2/(41)))((π/( (√(9−(√(41))))))coth((√((9−(√(41)))/2))π)−(π/( (√(9+(√(41))))))coth((√((9+(√(41)))/2))π))  Using Σ_(n=1) ^∞ (1/(n^2 +x^2 ))=(π/(2x))coth(πx)−(1/(2x^2 ))
$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} +\mathrm{9}{n}^{\mathrm{2}} +\mathrm{10}}=\frac{\mathrm{1}}{\mathrm{10}}+\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} +\mathrm{9}{n}^{\mathrm{2}} +\mathrm{10}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{41}}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}^{\mathrm{2}} +\frac{\mathrm{9}−\sqrt{\mathrm{41}}}{\mathrm{2}}\right)}−\frac{\mathrm{1}}{\left({n}^{\mathrm{2}} +\frac{\mathrm{9}+\sqrt{\mathrm{41}}}{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}+\sqrt{\frac{\mathrm{2}}{\mathrm{41}}}\left(\frac{\pi}{\:\sqrt{\mathrm{9}−\sqrt{\mathrm{41}}}}{coth}\left(\sqrt{\frac{\mathrm{9}−\sqrt{\mathrm{41}}}{\mathrm{2}}}\pi\right)−\frac{\pi}{\:\sqrt{\mathrm{9}+\sqrt{\mathrm{41}}}}{coth}\left(\sqrt{\frac{\mathrm{9}+\sqrt{\mathrm{41}}}{\mathrm{2}}}\pi\right)\right)+\frac{\mathrm{2}}{\:\sqrt{\mathrm{41}}}\left(\frac{\mathrm{1}}{\mathrm{9}+\sqrt{\mathrm{41}}}−\frac{\mathrm{1}}{\mathrm{9}−\sqrt{\mathrm{41}}}\right) \\ $$$$=\sqrt{\frac{\mathrm{2}}{\mathrm{41}}}\left(\frac{\pi}{\:\sqrt{\mathrm{9}−\sqrt{\mathrm{41}}}}{coth}\left(\sqrt{\frac{\mathrm{9}−\sqrt{\mathrm{41}}}{\mathrm{2}}}\pi\right)−\frac{\pi}{\:\sqrt{\mathrm{9}+\sqrt{\mathrm{41}}}}{coth}\left(\sqrt{\frac{\mathrm{9}+\sqrt{\mathrm{41}}}{\mathrm{2}}}\pi\right)\right) \\ $$$${Using}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{x}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}{x}}{coth}\left(\pi{x}\right)−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *