Menu Close

Prove-0-x-a-1-e-x-dx-1-2-a-a-1-a-1-




Question Number 134291 by Lordose last updated on 02/Mar/21
   Prove   ∫_0 ^( ∞) (x^a /(1+e^x ))dx = (1βˆ’2^(βˆ’a) )𝛇(a+1)πšͺ(a+1)
$$ \\ $$$$\:\boldsymbol{\mathrm{Prove}}\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{a}} }{\mathrm{1}+\mathrm{e}^{\mathrm{x}} }\mathrm{dx}\:=\:\left(\mathrm{1}βˆ’\mathrm{2}^{βˆ’\mathrm{a}} \right)\boldsymbol{\zeta}\left(\mathrm{a}+\mathrm{1}\right)\boldsymbol{\Gamma}\left(\mathrm{a}+\mathrm{1}\right) \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 02/Mar/21
I(a)=∫_0 ^∞ (x^a /(1+e^x ))dx=Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) ∫_0 ^∞ e^(βˆ’nx) x^a dx  =Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) (1/n^(a+1) )Ξ“(a+1)  =Ξ“(a+1)ΞΆ(a+1)(1βˆ’(1/2^(a+1βˆ’1) ))=a!ΞΆ(a+1)(1βˆ’2^(βˆ’a) )
$${I}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{a}} }{\mathrm{1}+{e}^{{x}} }{dx}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{{n}+\mathrm{1}} \int_{\mathrm{0}} ^{\infty} {e}^{βˆ’{nx}} {x}^{{a}} {dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{n}^{{a}+\mathrm{1}} }\Gamma\left({a}+\mathrm{1}\right) \\ $$$$=\Gamma\left({a}+\mathrm{1}\right)\zeta\left({a}+\mathrm{1}\right)\left(\mathrm{1}βˆ’\frac{\mathrm{1}}{\mathrm{2}^{{a}+\mathrm{1}βˆ’\mathrm{1}} }\right)={a}!\zeta\left({a}+\mathrm{1}\right)\left(\mathrm{1}βˆ’\mathrm{2}^{βˆ’{a}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *