# Question-76585

Question Number 76585 by Crabby89p13 last updated on 28/Dec/19
Commented by john santu last updated on 28/Dec/19
$${ratio}\:{blue}\:{area}\:{to}\:{red}\:=\:\mathrm{1}\::\:\mathrm{1} \\$$
Answered by john santu last updated on 28/Dec/19
$${let}\:{radius}\:=\:{r}.\:{blue}\:{area}\:=\:\mathrm{4}{r}^{\mathrm{2}} \left(\mathrm{4}−\pi\right) \\$$
Answered by JDamian last updated on 28/Dec/19
$${red}\:{area}\:=\:\mathrm{5}{r}^{\mathrm{2}} \left(\mathrm{4}−\pi\right)\:…\:{then} \\$$
Answered by john santu last updated on 28/Dec/19
$${red}\:{area}\:=\:\mathrm{4}{r}^{\mathrm{2}} \left(\mathrm{4}−\pi\right) \\$$
Answered by mr W last updated on 28/Dec/19
$${blue}\:{area}\:=\mathrm{16}\:\llcorner \\$$$${red}\:{area}\:=\:\mathrm{20}\:\llcorner \\$$$$\frac{{blue}}{{red}}=\frac{\mathrm{16}}{\mathrm{20}}=\frac{\mathrm{4}}{\mathrm{5}} \\$$
Commented by benjo 1/2 santuyy last updated on 28/Dec/19
$${what}\:{is}\:\lfloor \\$$
Commented by JDamian last updated on 28/Dec/19
$${it}\:{stands}\:{for}\:{any}\:{coloured}\:{corner}\:{of}\:{small} \\$$$${squares}\:{having}\:{a}\:{circle}\:{inscribed}. \\$$
Commented by mr W last updated on 28/Dec/19
Commented by Crabby89p13 last updated on 30/Dec/19
$$\frac{{blue}}{{red}}=\frac{\mathrm{16}}{\mathrm{20}}=\frac{\mathrm{4}}{\mathrm{5}} \\$$$$\\$$$${vhjmm}\mathrm{64} \\$$$$\\$$$$\\$$