# solve-for-x-the-equation-log-x-e-2x-eln-x-e-

Question Number 68898 by Rio Michael last updated on 16/Sep/19
$${solve}\:{for}\:{x}\:{the}\:{equation} \\$$$$\:\:{log}_{{x}} {e}^{\mathrm{2}{x}} \:=\:{eln}\:{x}\:−{e} \\$$
Commented by kaivan.ahmadi last updated on 16/Sep/19
$$\frac{\mathrm{2}{x}}{{lnx}}={elnx}−{e}\Rightarrow{e}\left({lnx}\right)^{\mathrm{2}} −{elnx}−\mathrm{2}{x}=\mathrm{0} \\$$$${set}\:{y}={lnx}\Rightarrow{x}={e}^{{y}} \\$$$$\Rightarrow{ey}^{\mathrm{2}} −{ey}−\mathrm{2}{e}^{{y}} =\mathrm{0}\Rightarrow{y}^{\mathrm{2}} −{y}=\mathrm{2}{e}^{{y}−\mathrm{1}} \\$$
Commented by kaivan.ahmadi last updated on 16/Sep/19
$${maybe},{we}\:{can}\:{find}\:{the}\:{answers}\:{by}\:{drow} \\$$$${y}^{\mathrm{2}} −{y}\:{and}\:\mathrm{2}{e}^{{y}−\mathrm{1}} . \\$$
Commented by Rio Michael last updated on 17/Sep/19
$${really}\:{that}\:{will}\:{be}\:{uneasy}..{thanks}\:{anyway} \\$$
Commented by MJS last updated on 17/Sep/19
$$\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\$$$$\mathrm{eln}\:{x}\:\left(\mathrm{ln}\:{x}\:−\mathrm{1}\right)−\mathrm{2}{x}=\mathrm{0} \\$$$$\Rightarrow \\$$$${x}\approx.\mathrm{690331} \\$$
Commented by Rio Michael last updated on 17/Sep/19
$${thanks}\:{so}\:{much},\:{but}\:{how}\:{did}\:{you}\:{get}\:{that}\:{approximate}\: \\$$$${value},\:{i}\:{mean}\:{the}\:{steps}\:{to}\:{obtain}\:{such}\:{approximate} \\$$
Commented by MJS last updated on 18/Sep/19
$$\mathrm{first},\:\mathrm{plot}\:\mathrm{it}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function} \\$$$${y}=\mathrm{eln}\:{x}\:\left(\mathrm{ln}\:{x}\:−\mathrm{1}\right)−\mathrm{2}{x} \\$$$$\mathrm{or}\:\mathrm{calculate}\:\mathrm{some}\:\mathrm{values} \\$$$$\mathrm{we}\:\mathrm{know}\:{x}>\mathrm{0}\:\left(\mathrm{because}\:\mathrm{ln}\:{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\right. \\$$$$\left.\mathrm{for}\:{x}\leqslant\mathrm{0}\right) \\$$$$\mathrm{put}\:{x}=\frac{\mathrm{1}}{\mathrm{e}}\:\Rightarrow\:\mathrm{ln}\:{x}\:=−\mathrm{1}\:\Rightarrow\:{y}=\mathrm{2e}−\frac{\mathrm{2}}{\mathrm{e}}>\mathrm{0} \\$$$$\mathrm{put}\:{x}=\mathrm{1}\:\Rightarrow\:\mathrm{ln}\:{x}\:=\mathrm{0}\:\Rightarrow\:{y}=−\mathrm{2}<\mathrm{0} \\$$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{e}}\approx.\mathrm{367879}<{x}<\mathrm{1} \\$$$$\mathrm{now}\:\mathrm{try}\:{x}=\left\{.\mathrm{4},\:.\mathrm{5},\:.\mathrm{6},\:.\mathrm{7},\:.\mathrm{8},\:.\mathrm{9}\right\} \\$$$${x}=.\mathrm{6}\:\Rightarrow\:{y}=.\mathrm{897}… \\$$$${x}=.\mathrm{7}\:\Rightarrow\:{y}=−.\mathrm{0846}… \\$$$$\Rightarrow\:.\mathrm{6}<{x}<.\mathrm{7}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{closer}\:\mathrm{to}\:.\mathrm{7} \\$$$$\Rightarrow\:\mathrm{try}\:{x}=\left\{.\mathrm{69},\:.\mathrm{68},\:.\mathrm{67},\:…,\:.\mathrm{61}\right\} \\$$$$\Rightarrow\:.\mathrm{69}<{x}<.\mathrm{70}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{closer}\:\mathrm{to}\:.\mathrm{69} \\$$$$\Rightarrow\:\mathrm{try}\:{x}=\left\{.\mathrm{691},\:.\mathrm{692},\:…,\:.\mathrm{699}\right\} \\$$$${x}=.\mathrm{691}\:\Rightarrow\:{y}=−.\mathrm{00592}… \\$$$$\Rightarrow\:\mathrm{try}\:{x}=\left\{.\mathrm{6901},\:.\mathrm{6902},\:…\right. \\$$
Commented by Rio Michael last updated on 18/Sep/19
$${thank}\:{you}\:{so}\:{much} \\$$