Menu Close

Question-208384




Question Number 208384 by efronzo1 last updated on 14/Jun/24
    ⇃
$$\:\:\:\:\downharpoonleft\underline{\:} \\ $$
Answered by A5T last updated on 14/Jun/24
log_(abc) (a)+log_(abc) (b)=2+3=5⇒log_(abc) (ab)=5  log_(abc) (abc)=1=log_(abc) (ab)+log_(abc) (c)=5+?  ⇒?=1−5=−4
$${log}_{{abc}} \left({a}\right)+{log}_{{abc}} \left({b}\right)=\mathrm{2}+\mathrm{3}=\mathrm{5}\Rightarrow{log}_{{abc}} \left({ab}\right)=\mathrm{5} \\ $$$${log}_{{abc}} \left({abc}\right)=\mathrm{1}={log}_{{abc}} \left({ab}\right)+{log}_{{abc}} \left({c}\right)=\mathrm{5}+? \\ $$$$\Rightarrow?=\mathrm{1}−\mathrm{5}=−\mathrm{4} \\ $$
Answered by Rasheed.Sindhi last updated on 14/Jun/24
 { ((log_(abc) (a)=2 )),((log_(abc) (b)=3 )),((log_(abc) (c)=? )) :}⇒ { (((abc)^2 =a)),(((abc)^3 =b)),(((abc)^x =c)) :}  (abc)^(2+3+x) =abc  5+x=1⇒x=−4
$$\begin{cases}{\mathrm{log}_{{abc}} \left({a}\right)=\mathrm{2}\:}\\{\mathrm{log}_{{abc}} \left({b}\right)=\mathrm{3}\:}\\{\mathrm{log}_{{abc}} \left({c}\right)=?\:}\end{cases}\Rightarrow\begin{cases}{\left({abc}\right)^{\mathrm{2}} ={a}}\\{\left({abc}\right)^{\mathrm{3}} ={b}}\\{\left({abc}\right)^{{x}} ={c}}\end{cases} \\ $$$$\left({abc}\right)^{\mathrm{2}+\mathrm{3}+{x}} ={abc} \\ $$$$\mathrm{5}+{x}=\mathrm{1}\Rightarrow{x}=−\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *