Menu Close

Question-212762




Question Number 212762 by universe last updated on 23/Oct/24
Commented by MrGaster last updated on 23/Oct/24
Rewrite the integrand function as:  (x−1)(x−2)…(x−n)=(((−1)^n )/(n!))x(x−1)(x−2)…(x−n)  Computational integral:  ∫_0 ^n (x−1)−(x−2)…(x−n)dx=∫_0 ^n (((−1)^n )/(n!))x(x−1)(x−2)…(x−n)dx  take notice of,x(x−1)(x−2)…(x−n)  Is a descending factorial polynomial.Tayi  x=0,1,2,…n The value is 0.So the integral is divided into two parts.:  ∫_0 ^n (x−1)(x−2)…(x−n)dx=∫_0 ^1 (x−1)(x−2)…(x−n)dx∫_1 ^2 (x−1)(x−2)…(x−n)dx+…+∫_(n+1) ^n (x−1)(x−2)…(x−n)dx  Between each cell[k,k+1],function  (x−1)(x−2)…(x−k)(x−k)(x−k)(−(k+1))…(x−n)  The sign of is the same so the absolutel  vaue can be extracted and the integralt  beween each cell can be calculated.  because[k,k+1]Symbol invariance can be written as:  ∫_k ^(k+1) ∣x−k∣x−(k+1)∣…∣x−n∣dx  Because the integration result betweenc  eah cell will contain a factor k!   When divided by n! when   These integral results will be eliminatedo  s the whole integral result is 0.  lim_(n→∞) (((−1)^n )/(n!))×0=0
Rewritetheintegrandfunctionas:(x1)(x2)(xn)=(1)nn!x(x1)(x2)(xn)Computationalintegral:0n(x1)(x2)(xn)dx=0n(1)nn!x(x1)(x2)(xn)dxtakenoticeof,x(x1)(x2)(xn)Isadescendingfactorialpolynomial.Tayix=0,1,2,nThevalueis0.Sotheintegralisdividedintotwoparts.:0n(x1)(x2)(xn)dx=01(x1)(x2)(xn)dx12(x1)(x2)(xn)dx++n+1n(x1)(x2)(xn)dxBetweeneachcell[k,k+1],function(x1)(x2)(xk)(xk)(xk)((k+1))(xn)Thesignofisthesamesotheabsolutelvauecanbeextractedandtheintegraltbeweeneachcellcanbecalculated.because[k,k+1]Symbolinvariancecanbewrittenas:kk+1xkx(k+1)xndxBecausetheintegrationresultbetweenceahcellwillcontainafactork!Whendividedbyn!whenTheseintegralresultswillbeeliminatedosthewholeintegralresultis0.limn(1)nn!×0=0
Answered by mathmax last updated on 23/Oct/24
p(x)=(x−1)(x−2).....(x−n)est un polynome de degren  ⇒p(x)=x^n +ax^(n−1) +bx^(n−2) +......+l ⇒  ∫_0 ^n p(x)dx=[(x^(n+1) /(n+1))+((ax^n )/n)+.....+lx]_0 ^n   =(n^(n+1) /(n+1))+((an^n )/n)+.....+ln ⇒  (((−1)^n )/(n!))∫_0 ^n p(x)dx=(((−1)^n )/(n!)){(n^(n+1) /(n+1))+((an^n )/n)+....+ln}  et ∣(((−1)^n )/(n!))∫_0 ^n p(x)dx∣≤(1/(n!))(n^(n+1) /(n+1))+∣a∣(n^n /(n!n))  +.....∣l∣(n/(n!))→0 (n→∞)  c est la factorielle qui commmande ⇒  lim_(n→∞) (((−1)^n )/(n!))∫_0 ^n (x−1)(x−2)...(x−n)dx =0
p(x)=(x1)(x2)..(xn)estunpolynomededegrenp(x)=xn+axn1+bxn2++l0np(x)dx=[xn+1n+1+axnn+..+lx]0n=nn+1n+1+annn+..+ln(1)nn!0np(x)dx=(1)nn!{nn+1n+1+annn+.+ln}et(1)nn!0np(x)dx∣⩽1n!nn+1n+1+annn!n+..lnn!0(n)cestlafactoriellequicommmandelimn(1)nn!0n(x1)(x2)(xn)dx=0

Leave a Reply

Your email address will not be published. Required fields are marked *