Question-212762 Tinku Tara October 23, 2024 Limits 0 Comments FacebookTweetPin Question Number 212762 by universe last updated on 23/Oct/24 Commented by MrGaster last updated on 23/Oct/24 Rewritetheintegrandfunctionas:(x−1)(x−2)…(x−n)=(−1)nn!x(x−1)(x−2)…(x−n)Computationalintegral:∫0n(x−1)−(x−2)…(x−n)dx=∫0n(−1)nn!x(x−1)(x−2)…(x−n)dxtakenoticeof,x(x−1)(x−2)…(x−n)Isadescendingfactorialpolynomial.Tayix=0,1,2,…nThevalueis0.Sotheintegralisdividedintotwoparts.:∫0n(x−1)(x−2)…(x−n)dx=∫01(x−1)(x−2)…(x−n)dx∫12(x−1)(x−2)…(x−n)dx+…+∫n+1n(x−1)(x−2)…(x−n)dxBetweeneachcell[k,k+1],function(x−1)(x−2)…(x−k)(x−k)(x−k)(−(k+1))…(x−n)Thesignofisthesamesotheabsolutelvauecanbeextractedandtheintegraltbeweeneachcellcanbecalculated.because[k,k+1]Symbolinvariancecanbewrittenas:∫kk+1∣x−k∣x−(k+1)∣…∣x−n∣dxBecausetheintegrationresultbetweenceahcellwillcontainafactork!Whendividedbyn!whenTheseintegralresultswillbeeliminatedosthewholeintegralresultis0.limn→∞(−1)nn!×0=0 Answered by mathmax last updated on 23/Oct/24 p(x)=(x−1)(x−2)…..(x−n)estunpolynomededegren⇒p(x)=xn+axn−1+bxn−2+……+l⇒∫0np(x)dx=[xn+1n+1+axnn+…..+lx]0n=nn+1n+1+annn+…..+ln⇒(−1)nn!∫0np(x)dx=(−1)nn!{nn+1n+1+annn+….+ln}et∣(−1)nn!∫0np(x)dx∣⩽1n!nn+1n+1+∣a∣nnn!n+…..∣l∣nn!→0(n→∞)cestlafactoriellequicommmande⇒limn→∞(−1)nn!∫0n(x−1)(x−2)…(x−n)dx=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-212784Next Next post: Question-212760 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.