Menu Close

f-x-3-x-1-f-x-3-1-x-x-x-1-f-x-




Question Number 213000 by golsendro last updated on 28/Oct/24
   f(((x−3)/(x+1))) + f(((x+3)/(1−x))) = x , x≠ ± 1     f(x)=?
f(x3x+1)+f(x+31x)=x,x±1f(x)=?
Answered by Ghisom last updated on 28/Oct/24
((u−3)/(u+1))=v ⇔ u=((v+3)/(1−v))  2f(x)=((x−3)/(x+1))+((x+3)/(1−x))−x  f(x)=((x(x^2 +7))/(2(1−x^2 )))
u3u+1=vu=v+31v2f(x)=x3x+1+x+31xxf(x)=x(x2+7)2(1x2)
Answered by ajfour last updated on 28/Oct/24
f(u)+f(v)=x  u=h(x)=((x−3)/(1+x))  ⇒ x=((u+3)/(1−u))  v=−h(−x)=((x+3)/(1−x))  x=((v−3)/(1+v))=((u+3)/(1−u))  v−3−uv+3u=u+3+uv+3v  (v−u)+uv+3=0  or  v=((u−3)/(1+u))       &   u=((v+3)/(1−v))  f(x)+f(((x−3)/(1+x)))=((x+3)/(1−x))  ⇒   f(x)+x−f(((x+3)/(1−x)))=((x+3)/(1−x))  ⇒f(x)−f(((x+3)/(1−x)))=((x^2 +3)/(x(1−x)))    ..(i)  &  f(x)+f(((x+3)/(1−x)))=((x−3)/(1−x))       ..(ii)  adding  (i) & (ii)  2f(x)=((x^2 +3+x(x−3))/(x(1−x)))  ⇒   f(x)=((2x^2 −3x+3)/(2x(1−x)))
f(u)+f(v)=xu=h(x)=x31+xx=u+31uv=h(x)=x+31xx=v31+v=u+31uv3uv+3u=u+3+uv+3v(vu)+uv+3=0orv=u31+u&u=v+31vf(x)+f(x31+x)=x+31xf(x)+xf(x+31x)=x+31xf(x)f(x+31x)=x2+3x(1x)..(i)&f(x)+f(x+31x)=x31x..(ii)adding(i)&(ii)2f(x)=x2+3+x(x3)x(1x)f(x)=2x23x+32x(1x)
Commented by Ghisom last updated on 30/Oct/24
test your solution!
testyoursolution!

Leave a Reply

Your email address will not be published. Required fields are marked *