Menu Close

Question-215820




Question Number 215820 by Jubr last updated on 18/Jan/25
Commented by A5T last updated on 18/Jan/25
This is not generally true, it fails when c=0.
$$\mathrm{This}\:\mathrm{is}\:\mathrm{not}\:\mathrm{generally}\:\mathrm{true},\:\mathrm{it}\:\mathrm{fails}\:\mathrm{when}\:\mathrm{c}=\mathrm{0}. \\ $$
Answered by Rasheed.Sindhi last updated on 18/Jan/25
ax^2 +bx+c=0  x=((−b±(√(b^2 −4ac)) )/(2a))×((−b∓(√(b^2 −4ac)))/(−b∓(√(b^2 −4ac))))  x=((b^2 −(b^2 −4ac))/(2a(−b∓(√(b^2 −4ac)))))    =((4ac)/(2a(−b∓(√(b^2 −4ac)))))    =((2c)/(−b∓(√(b^2 −4ac))))
$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\:}{\mathrm{2}{a}}×\frac{−{b}\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{−{b}\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}} \\ $$$${x}=\frac{{b}^{\mathrm{2}} −\left({b}^{\mathrm{2}} −\mathrm{4}{ac}\right)}{\mathrm{2}{a}\left(−{b}\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\right)} \\ $$$$\:\:=\frac{\mathrm{4}{ac}}{\mathrm{2}{a}\left(−{b}\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}\right)} \\ $$$$\:\:=\frac{\mathrm{2}{c}}{−{b}\mp\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}} \\ $$
Commented by Jubr last updated on 19/Jan/25
Thanks sir.
$${Thanks}\:{sir}. \\ $$
Answered by A5T last updated on 18/Jan/25
ax^2 +bx+c=0  x≠0⇒c((1/x))^2 +b((1/x))+a=0  ⇒(1/x)=((−b+_− (√(b^2 −4ca)))/(2c))(c≠0)  ⇒x=((2c)/(−b+_− (√(b^2 −4ac)))) when c≠0 and x≠0
$$\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{x}\neq\mathrm{0}\Rightarrow\mathrm{c}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} +\mathrm{b}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{a}=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{x}}=\frac{−\mathrm{b}\underset{−} {+}\sqrt{\mathrm{b}^{\mathrm{2}} −\mathrm{4ca}}}{\mathrm{2c}}\left(\mathrm{c}\neq\mathrm{0}\right) \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{2c}}{−\mathrm{b}\underset{−} {+}\sqrt{\mathrm{b}^{\mathrm{2}} −\mathrm{4ac}}}\:\mathrm{when}\:\mathrm{c}\neq\mathrm{0}\:\mathrm{and}\:\mathrm{x}\neq\mathrm{0} \\ $$
Commented by Jubr last updated on 19/Jan/25
Thanks sir
$${Thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *