Question Number 216710 by universe last updated on 16/Feb/25 $$\:\:\:\mathrm{let}\:{y}_{\mathrm{1}} \:,\:{y}_{\mathrm{2}} \:,\:{y}_{\mathrm{3}\:\:} …\:{y}_{{p}} \:\mathrm{be}\:\mathrm{fixed}\:\mathrm{positive}\:\mathrm{number} \\ $$$$\:\:\:\mathrm{consider}\:\mathrm{the}\:\mathrm{sequences} \\ $$$$\:{s}_{{n}} \:=\:\:\frac{{y}_{\mathrm{1}} ^{{n}} +{y}_{\mathrm{2}} ^{{n}} +{y}_{\mathrm{3}} ^{{n}} +…+{y}_{{p}}…
Question Number 216706 by issac last updated on 16/Feb/25 $$\int\:\:\:\frac{\mathrm{d}{z}}{\mathrm{1}+\mathrm{sin}\left({z}\right)\mathrm{cos}\left({z}\right)}= \\ $$$$\int\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \left({z}\right)\mathrm{d}{z}}{\mathrm{sec}^{\mathrm{2}} \left({z}\right)+\mathrm{tan}\left({z}\right)}\:\mathrm{multiply}\:\mathrm{sec}^{\mathrm{2}} \left({z}\right) \\ $$$$\mathrm{sec}^{\mathrm{2}} \left({z}\right)=\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left({z}\right) \\ $$$$\int\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \left({z}\right)\:\mathrm{d}{z}}{\mathrm{1}+\mathrm{tan}\left({z}\right)+\mathrm{tan}^{\mathrm{2}} \left({z}\right)} \\ $$$${s}=\mathrm{tan}\left({z}\right)…
Question Number 216670 by ahmed2025 last updated on 15/Feb/25 Answered by shunmisaki007 last updated on 15/Feb/25 $$\int\mathrm{cos}^{−{x}} \left(\pi\right){dx}=\int\left(−\mathrm{1}\right)^{−{x}} {dx} \\ $$$$\:\:\:=\int\left({e}^{\pi{i}} \right)^{−{x}} {dx}=\int{e}^{−\pi{ix}} {dx} \\…
Question Number 216679 by abdi last updated on 15/Feb/25 Commented by Rasheed.Sindhi last updated on 16/Feb/25 $${Not}\:{clear}\:{enough}! \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 216672 by Lucerte last updated on 15/Feb/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 216655 by abdelsalam last updated on 14/Feb/25 Answered by issac last updated on 14/Feb/25 $${y}^{\mathrm{4}} ={y}^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$${y}^{\mathrm{4}} −{y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}=−{x}^{\mathrm{2}} \\ $$$$\left({y}^{\mathrm{2}}…
Question Number 216664 by Rasheed.Sindhi last updated on 14/Feb/25 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{non}-\mathrm{negative}\:\mathrm{integers}: \\ $$$$\:\:\:\mathrm{n}^{\mathrm{3}} =\mathrm{3m}\left(\mathrm{m}+\mathrm{2n}+\mathrm{1}\right) \\ $$ Answered by AntonCWX last updated on 15/Feb/25 $${m}={n}=\mathrm{0} \\ $$…
Question Number 216665 by Tawa11 last updated on 14/Feb/25 Commented by Tawa11 last updated on 14/Feb/25 In the figure, a cylinder of mass M, radius…
Question Number 216651 by atmstsr_98 last updated on 14/Feb/25 $$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ Commented by ArshadS last updated on 14/Feb/25…
Question Number 216661 by MrGaster last updated on 14/Feb/25 $$\mathrm{Prove}:\langle{x}^{{m}} \rangle=\underset{\left\{{p}_{{n}} \right\}} {\acute {\sum}}\overset{{n}} {\prod}\frac{{m}!}{{p}_{{n}} !\left({n}!\right)^{{p}_{{n}} } }\langle{x}^{{n}} \rangle_{{c}} ^{{p}_{{n}} } \\ $$ Terms of…