Menu Close

Author: Tinku Tara

10-7-9-4-21-8-

Question Number 215248 by sudipyt44 last updated on 01/Jan/25 $$\frac{\mathrm{10}}{\mathrm{7}}\boldsymbol{\div}\frac{\mathrm{9}}{\mathrm{4}}×\frac{\mathrm{21}}{\mathrm{8}} \\ $$ Commented by A5T last updated on 01/Jan/25 $$\left(\mathrm{a}\boldsymbol{\div}\mathrm{b}\right)×\mathrm{c}=\frac{\mathrm{ac}}{\mathrm{b}} \\ $$$$\mathrm{a}\boldsymbol{\div}\left(\mathrm{b}×\mathrm{c}\right)=\frac{\mathrm{a}}{\mathrm{bc}} \\ $$ Answered…

Question-215232

Question Number 215232 by Mingma last updated on 01/Jan/25 Answered by devdutt last updated on 01/Jan/25 $$\mathrm{ln}\:\mathrm{3}\sqrt{\mathrm{5}}\:+\:\mathrm{ln}\:{x}\:\mathrm{log}\:_{\mathrm{45}} {x}\:=\:\mathrm{2ln}\:{x}\: \\ $$$$\Rightarrow\:\mathrm{ln}\:\mathrm{3}\sqrt{\mathrm{5}}\:+\:\frac{\mathrm{ln}\:^{\mathrm{2}} {x}}{\mathrm{ln}\:\mathrm{45}}\:=\:\mathrm{2ln}\:{x}\: \\ $$$$\Rightarrow\:\mathrm{ln}\:^{\mathrm{2}} {x}\:−\:\mathrm{2ln}\:\mathrm{45}\:\mathrm{ln}\:{x}\:+\:\mathrm{ln}\:\mathrm{3}\sqrt{\mathrm{5}}\:\mathrm{ln}\:\mathrm{45}\:=\:\mathrm{0} \\…

I-have-just-discovered-that-it-is-only-alphabetic-letters-that-can-be-made-bold-while-typing-with-the-keyboard-of-this-app-Numbers-0-9-can-t-be-made-bold-after-being-selected-Am-I-right-or

Question Number 215224 by ppch145 last updated on 31/Dec/24 $$\mathrm{I}\:\mathrm{have}\:\mathrm{just}\:\mathrm{discovered}\:\mathrm{that}\:\mathrm{it}\: \\ $$$$\mathrm{is}\:\mathrm{only}\:\mathrm{alphabetic}\:\mathrm{letters}\:\mathrm{that} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{made}\:\mathrm{bold}\:\mathrm{while}\: \\ $$$$\mathrm{typing}\:\mathrm{with}\:\mathrm{the}\:\mathrm{keyboard}\:\mathrm{of}\: \\ $$$$\mathrm{this}\:\mathrm{app}.\:\mathrm{Numbers}\:\mathrm{0}\:-\:\mathrm{9}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{made}\:\mathrm{bold},\:\mathrm{after}\:\mathrm{being}\: \\ $$$$\mathrm{selected}.\: \\ $$$$ \\…

Question-215193

Question Number 215193 by MATHEMATICSAM last updated on 31/Dec/24 Commented by MATHEMATICSAM last updated on 31/Dec/24 $$\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{circle}\:\mathrm{is}\:{a}\:\mathrm{sq}\:\mathrm{unit} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{larger}\:\mathrm{circle}\:\mathrm{is}\:{A}\:\mathrm{sq}\:\mathrm{unit} \\ $$$$\mathrm{find}\:\frac{{a}}{{A}}\:. \\ $$ Answered by…