Menu Close

Author: Tinku Tara

sin20-cos80-tan30-sin80-

Question Number 11285 by uni last updated on 19/Mar/17 $$\frac{{sin}\mathrm{20}}{{cos}\mathrm{80}−{tan}\mathrm{30}×{sin}\mathrm{80}}=? \\ $$ Answered by mrW1 last updated on 19/Mar/17 $$=\frac{{sin}\mathrm{20}}{{cos}\mathrm{80}−\frac{\mathrm{sin}\:\mathrm{30}}{\mathrm{cos}\:\mathrm{30}}×{sin}\mathrm{80}} \\ $$$$=\frac{{sin}\mathrm{20}×\mathrm{cos}\:\mathrm{30}}{\mathrm{cos}\:\mathrm{30}×{cos}\mathrm{80}−\mathrm{sin}\:\mathrm{30}×{sin}\mathrm{80}} \\ $$$$=\frac{{sin}\mathrm{20}×\mathrm{cos}\:\mathrm{30}}{\mathrm{cos}\:\mathrm{110}} \\…

one-of-the-foci-of-the-ellipse-x-2-9-y-2-4-1-is-A-4-0-B-9-0-C-5-0-D-5-0-

Question Number 76819 by Rio Michael last updated on 30/Dec/19 $$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{foci}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ellipse} \\ $$$$\:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{9}}\:+\:\frac{{y}^{\mathrm{2}} }{\mathrm{4}}\:=\:\mathrm{1}\:\mathrm{is} \\ $$$$\mathrm{A}.\:\left(\mathrm{4},\mathrm{0}\right) \\ $$$$\mathrm{B}.\:\left(\mathrm{9},\mathrm{0}\right) \\ $$$$\mathrm{C}.\:\left(\mathrm{5},\mathrm{0}\right) \\ $$$$\mathrm{D}.\:\left(\sqrt{\mathrm{5}}\:,\:\mathrm{0}\right) \\ $$…

A-compound-pendulum-ocsillates-through-angles-about-its-equilibrium-position-such-that-8a-2-9g-cos-a-gt-0-its-period-is-A-2pi-8a-9g-B-3pi-8-a-g-C-2pi-9g-8a-D-8pi-

Question Number 76817 by Rio Michael last updated on 30/Dec/19 $$\mathrm{A}\:\mathrm{compound}\:\mathrm{pendulum}\:\mathrm{ocsillates} \\ $$$$\mathrm{through}\:\mathrm{angles}\:\theta\:\mathrm{about}\:\mathrm{its}\:\mathrm{equilibrium} \\ $$$$\mathrm{position}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{8}{a}\theta^{\mathrm{2}} \:=\:\mathrm{9}{g}\:{cos}\theta,\:{a}>\mathrm{0}.\:\mathrm{its}\:\mathrm{period}\:\mathrm{is}\: \\ $$$$\mathrm{A}.\:\mathrm{2}\pi\sqrt{\frac{\mathrm{8}{a}}{\mathrm{9}{g}}} \\ $$$$\mathrm{B}.\:\frac{\mathrm{3}\pi}{\mathrm{8}}\sqrt{\frac{{a}}{{g}}} \\ $$$$\mathrm{C}.\:\mathrm{2}\pi\sqrt{\frac{\mathrm{9}{g}}{\mathrm{8}{a}}} \\…

4-15-1-6-4-15-4-15-1-3-

Question Number 142348 by mathdanisur last updated on 30/May/21 $$\frac{\sqrt[{\mathrm{6}}]{\mathrm{4}−\sqrt{\mathrm{15}}}}{\:\sqrt{\mathrm{4}−\sqrt{\mathrm{15}}}\:\centerdot\:\sqrt[{\mathrm{3}}]{\mathrm{4}+\sqrt{\mathrm{15}}}}\:=\:? \\ $$ Answered by bramlexs22 last updated on 30/May/21 $$\:\frac{\sqrt[{\mathrm{6}\:}]{\mathrm{4}−\sqrt{\mathrm{15}}}}{\:\sqrt[{\mathrm{6}\:}]{\left(\mathrm{4}−\sqrt{\mathrm{15}}\right)^{\mathrm{3}} }.\sqrt[{\mathrm{3}\:}]{\mathrm{4}+\sqrt{\mathrm{15}}}}\:= \\ $$$$\:\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{6}}]{\left(\mathrm{4}−\sqrt{\mathrm{15}}\right)^{\mathrm{2}} }.\sqrt[{\mathrm{3}\:}]{\mathrm{4}+\sqrt{\mathrm{15}}}}\:= \\…