Menu Close

Author: Tinku Tara

5-log-2-3-is-transcendental-General-Let-a-b-and-c-algebraic-and-log-b-c-transcendental-If-a-log-b-c-is-algebraic-so-b-a-q-with-q-rational-

Question Number 10912 by geovane10math last updated on 01/Mar/17 $$\mathrm{5}^{\mathrm{log}_{\mathrm{2}} \mathrm{3}} \:\mathrm{is}\:\mathrm{transcendental}? \\ $$$$\mathrm{General}: \\ $$$$\mathrm{Let}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{algebraic}\:\mathrm{and}\:\mathrm{log}_{{b}} {c}\: \\ $$$$\mathrm{transcendental}.\:\mathrm{If}\:{a}^{\mathrm{log}_{{b}} {c}} \:\mathrm{is}\:\mathrm{algebraic},\:\mathrm{so} \\ $$$${b}\:=\:{a}^{{q}} ,\:\mathrm{with}\:{q}\:\mathrm{rational}? \\…

Question-76442

Question Number 76442 by aliesam last updated on 27/Dec/19 Answered by Tanmay chaudhury last updated on 28/Dec/19 $${x}={tana}\:\:\:\:{dx}={sec}^{\mathrm{2}} {ada} \\ $$$${sec}^{−\mathrm{1}} \left(\frac{\mathrm{1}+{tan}^{\mathrm{2}} {a}}{\mathrm{1}−{tan}^{\mathrm{2}} {a}}\right)\rightarrow{sec}^{−\mathrm{1}} \left({sec}\mathrm{2}{a}\right)=\mathrm{2}{a}…

express-in-partial-fraction-3x-2-x-2-1-x-1-

Question Number 10907 by j.masanja06@gmail.com last updated on 01/Mar/17 $$\mathrm{express}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)} \\ $$ Answered by sandy_suhendra last updated on 01/Mar/17 $$=\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)}=\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{1}\right)} \\…

Question-76443

Question Number 76443 by aliesam last updated on 27/Dec/19 Answered by mr W last updated on 27/Dec/19 $${x}+{y}=\mathrm{2}{a} \\ $$$${xy}=\frac{\left({b}^{\mathrm{2}} −\mathrm{1}\right){a}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$${x}\left(\mathrm{2}{a}−{x}\right)=\frac{\left({b}^{\mathrm{2}}…

given-N-4-5-1-5-1-4-1-5-1-8-1-5-1-16-1-find-value-of-N-1-48-

Question Number 76438 by john santu last updated on 27/Dec/19 $${given}\:{N}\:=\frac{\mathrm{4}}{\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} +\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{8}}} +\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{16}}} +\mathrm{1}\right)} \\ $$$${find}\:{value}\:{of}\:\left({N}+\mathrm{1}\right)^{\mathrm{48}} . \\ $$ Answered by mr W last updated…