Menu Close

Author: Tinku Tara

Suppose-I-want-to-prove-a-statement-say-P-n-for-natural-numbers-mathematical-induction-is-a-proper-tool-for-me-If-a-P-n-is-required-to-prove-for-natural-n-c-mathematical-induction-is-again-a-too

Question Number 2936 by Rasheed Soomro last updated on 30/Nov/15 $${Suppose}\:{I}\:{want}\:{to}\:{prove}\:{a}\:{statement},{say}\:{P}\left({n}\right),\: \\ $$$${for}\:{natural}\:{numbers}\:\boldsymbol{{mathematical}}\:\boldsymbol{{induction}} \\ $$$${is}\:{a}\:{proper}\:{tool}\:{for}\:{me}. \\ $$$$\mathcal{I}{f}\:{a}\:{P}\left({n}\right)\:{is}\:{required}\:{to}\:{prove}\:{for}\:{natural}\:{n}\geqslant{c}\: \\ $$$${mathematical}\:{induction}\:{is}\:{again}\:{a}\:{tool}\:{of}\:{proof}. \\ $$$$ \\ $$$$\mathcal{N}{ow}\:{suppose}\:{I}\:{have}\:{a}\:{statement}\:{which}\:{is}\:{true} \\ $$$${only}\:{for}\:\:\underset{−}…

solve-x-3-2-x-5-

Question Number 134005 by mr W last updated on 26/Feb/21 $${solve}\:{x}^{\mathrm{3}} −\mathrm{2}\lfloor{x}\rfloor=\mathrm{5} \\ $$ Answered by MJS_new last updated on 26/Feb/21 $${x}={i}\left[\mathrm{nteger}\:\mathrm{part}\right]+{f}\left[\mathrm{ractal}\:\mathrm{part}\right] \\ $$$$\left({i}+{f}\right)^{\mathrm{3}} −\mathrm{2}{i}=\mathrm{5}…

Question-134006

Question Number 134006 by mohammad17 last updated on 26/Feb/21 Answered by malwan last updated on 26/Feb/21 $$\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{4}} {{lim}}\:\frac{\mathrm{2}{x}−\mathrm{5}}{\mathrm{3}}\:=\:\frac{\mathrm{2}×\mathrm{4}−\mathrm{5}}{\mathrm{3}}\:=\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow−\mathrm{3}^{+} } {{lim}}\:\frac{\sqrt{{x}+\mathrm{4}}\:−\sqrt{−{x}−\mathrm{2}}}{\:\sqrt{{x}+\mathrm{3}}}×\frac{\sqrt{{x}+\mathrm{4}}\:+\:\sqrt{−{x}−\mathrm{2}}}{\:\sqrt{{x}+\mathrm{4}}\:+\:\sqrt{−{x}−\mathrm{2}}} \\ $$$$=\:\underset{{x}\rightarrow−\mathrm{3}^{+} }…

Prove-that-i-i-i-where-i-1-

Question Number 2930 by Filup last updated on 30/Nov/15 $$\mathrm{Prove}\:\mathrm{that}\:\Gamma\left({i}\right)=−{i}\left({i}\right)! \\ $$$$\mathrm{where}\:{i}=\sqrt{−\mathrm{1}} \\ $$ Commented by 123456 last updated on 02/Dec/15 $$\Gamma\left({z}\right)\Gamma\left(\mathrm{1}−{z}\right)=\frac{\pi}{\mathrm{sin}\:\pi{z}} \\ $$$$\Gamma\left({z}\right)\Gamma\left(−{z}\right)=−\frac{\pi}{{z}\:\mathrm{sin}\:\pi{z}} \\…

lim-n-1-1-2-1-3-1-n-n-2-n-

Question Number 133997 by rs4089 last updated on 26/Feb/21 $${lim}_{{n}\rightarrow\infty} \left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}}}{{n}^{\mathrm{2}} }\right)^{{n}} \\ $$ Answered by mathmax by abdo last updated on 27/Feb/21 $$\mathrm{U}_{\mathrm{n}} =\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+….+\frac{\mathrm{1}}{\mathrm{n}}}{\mathrm{n}^{\mathrm{2}}…