Menu Close

Category: Differential Equation

Is-there-a-solution-of-y-in-terms-of-x-for-the-following-D-E-dy-dx-c-1-y-c-2-x-c-3-2-c-4-Here-c-1-c-2-c-3-c-4-are-constants-

Question Number 1211 by 112358 last updated on 14/Jul/15 $${Is}\:{there}\:{a}\:{solution}\:{of}\:{y}\:{in}\:{terms} \\ $$$${of}\:{x}\:{for}\:{the}\:{following}\:{D}.{E}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}+\frac{{c}_{\mathrm{1}} }{{y}\left({c}_{\mathrm{2}} {x}+{c}_{\mathrm{3}} \right)^{\mathrm{2}} }={c}_{\mathrm{4}} \\ $$$${Here}\:{c}_{\mathrm{1}} ,\:{c}_{\mathrm{2}} ,\:{c}_{\mathrm{3}} ,\:{c}_{\mathrm{4}} \:{are}\:{constants}.\: \\…

m-dv-dt-q-v-B-E-f-v-0-v-0-v-t-v-dr-dt-r-0-0-r-t-

Question Number 970 by 123456 last updated on 09/May/15 $${m}\frac{{d}\boldsymbol{{v}}}{{dt}}={q}\left(\boldsymbol{{v}}×\boldsymbol{{B}}+\boldsymbol{{E}}\right)+\boldsymbol{{f}} \\ $$$$\boldsymbol{{v}}\left(\mathrm{0}\right)=\boldsymbol{{v}}_{\mathrm{0}} \\ $$$$\boldsymbol{{v}}\left({t}\right)=? \\ $$$$\boldsymbol{{v}}=\frac{{d}\boldsymbol{{r}}}{{dt}} \\ $$$$\boldsymbol{{r}}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\boldsymbol{{r}}\left({t}\right)=?? \\ $$ Terms of Service…

2-u-x-2-v-1-2-u-x-t-v-2-2-2-u-t-2-u-x-0-f-x-u-t-x-0-g-x-

Question Number 776 by 123456 last updated on 12/Mar/15 $$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }={v}_{\mathrm{1}} \frac{\partial^{\mathrm{2}} {u}}{\partial{x}\partial{t}}+{v}_{\mathrm{2}} ^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {u}}{\partial{t}^{\mathrm{2}} } \\ $$$${u}\left({x},\mathrm{0}\right)={f}\left({x}\right) \\ $$$${u}_{{t}} \left({x},\mathrm{0}\right)={g}\left({x}\right) \\ $$…

f-R-R-g-R-R-d-fg-dx-df-dx-dg-dx-d-f-2-dx-df-dx-df-dx-d-g-2-dx-

Question Number 767 by 123456 last updated on 09/Mar/15 $${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${g}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\frac{{d}\left({fg}\right)}{{dx}}=\frac{{df}}{{dx}}\centerdot\frac{{dg}}{{dx}} \\ $$$$\frac{{d}\left({f}^{\mathrm{2}} \right)}{{dx}}=\frac{{df}}{{dx}}\centerdot\frac{{df}}{{dx}} \\ $$$$\frac{{d}\left({g}^{\mathrm{2}} \right)}{{dx}}=? \\ $$ Commented by 123456…

obtain-the-series-solution-of-the-differential-equation-y-II-xy-I-y-x-2-1-y-0-1-and-y-I-0-2-

Question Number 131805 by Engr_Jidda last updated on 08/Feb/21 $${obtain}\:{the}\:{series}\:{solution}\:{of}\:{the}\:{differential}\: \\ $$$${equation}:\:{y}^{{II}} +{xy}^{{I}} −{y}={x}^{\mathrm{2}} +\mathrm{1} \\ $$$${y}\left(\mathrm{0}\right)=\mathrm{1}\:{and}\:{y}^{{I}} \left(\mathrm{0}\right)=\mathrm{2} \\ $$ Answered by physicstutes last updated…

Find-the-sum-r-0-n-3r-5-n-r-5-n-0-8-n-1-11-n-2-3n-5-n-n-as-a-simple-function-of-n-

Question Number 519 by Yugi last updated on 25/Jan/15 $${Find}\:{the}\:{sum}\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(\mathrm{3}{r}+\mathrm{5}\right)\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}=\mathrm{5}\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}\:+\mathrm{8}\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}\:+\mathrm{11}\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}\:+…\left(\mathrm{3}{n}+\mathrm{5}\right)\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}\: \\ $$$${as}\:{a}\:{simple}\:{function}\:{of}\:{n}. \\ $$ Commented by prakash jain last updated on 22/Jan/15 $$\underset{{r}=\mathrm{0}}…

A-person-is-said-to-be-n-years-old-where-n-is-a-non-negative-integer-if-the-person-has-lived-at-least-n-years-and-has-not-lived-n-1-years-At-some-point-Tom-is-4-years-old-and-John-is-three-times-

Question Number 517 by Yugi last updated on 25/Jan/15 $${A}\:{person}\:{is}\:{said}\:{to}\:{be}\:{n}\:{years}\:{old}\:\left(\:{where}\:{n}\:{is}\:{a}\:{non}−{negative}\:{integer}\right)\:{if}\: \\ $$$${the}\:{person}\:{has}\:{lived}\:{at}\:{least}\:{n}\:{years}\:{and}\:{has}\:{not}\:{lived}\:{n}+\mathrm{1}\:{years}.\:{At}\:{some}\:{point} \\ $$$${Tom}\:{is}\:\mathrm{4}\:{years}\:{old}\:{and}\:{John}\:{is}\:{three}\:{times}\:{as}\:{old}\:{as}\:{Mary}.\:{At}\:{another}\:{time}, \\ $$$${Mary}\:{is}\:{twice}\:{as}\:{old}\:{as}\:{Tom}\:{and}\:{John}\:{is}\:{five}\:{times}\:{as}\:{old}\:{as}\:{Tom}.\:{At}\:{a}\:{third}\: \\ $$$${time},\:{John}\:{is}\:{twice}\:{as}\:{old}\:{as}\:{Mary}\:{and}\:{Tom}\:{is}\:{t}\:{years}\:{old}.\:{What}\:{is}\:{the}\:{largest} \\ $$$${possible}\:{value}\:{of}\:{t}? \\ $$ Commented by prakash…