Menu Close

Category: Geometry

Question-216245

Question Number 216245 by Tawa11 last updated on 01/Feb/25 Commented by Tawa11 last updated on 01/Feb/25 $$\mathrm{I}\:\mathrm{can}\:\mathrm{use}\:\mathrm{cosine}\:\mathrm{rule}. \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{see}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is} \\ $$$$\mathrm{better}\:\mathrm{approach}. \\ $$ Commented by…

Question-216188

Question Number 216188 by BaliramKumar last updated on 29/Jan/25 Answered by som(math1967) last updated on 29/Jan/25 $$\:{AC}:{BC}=\mathrm{5}:\mathrm{12} \\ $$$${if}\:{AC}=\mathrm{5}{cm}\:{BC}=\mathrm{12}{cm} \\ $$$${then}\:{AC}+{BC}=\mathrm{17}={AB} \\ $$$${not}\:{possible} \\ $$$${AC}=\mathrm{10}{cm}…

Question-216201

Question Number 216201 by BaliramKumar last updated on 29/Jan/25 Answered by dionigi last updated on 30/Jan/25 $${the}\:{largest}\:{possible}\:{area}\:{is}\: \\ $$$${that}\:{of}\:{an}\:{equilateral}\:{triangle} \\ $$$${with}\:{side}\:\mathrm{60}/\mathrm{3}\:=\:\mathrm{20}\:{cm} \\ $$$${A}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{2}}\:×\:\mathrm{20}\:×\:\mathrm{20}\:×\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\:\mathrm{173}.\mathrm{205}…<\mathrm{174} \\ $$…

Question-216164

Question Number 216164 by BaliramKumar last updated on 29/Jan/25 Answered by AntonCWX last updated on 29/Jan/25 $${The}\:{smallest}\:{distance}\:{between}\:{two}\:{sides}\:{is}\:\mathrm{2}−\mathrm{1}=\mathrm{1} \\ $$$${The}\:{sum}\:{of}\:{three}\:{sides}\:{is}\:\mathrm{1}+\mathrm{2}+\mathrm{4}=\mathrm{7} \\ $$$${Let}\:{the}\:{fourth}\:{side}\:{be}\:{d} \\ $$$$\mathrm{1}<{d}<\mathrm{7} \\ $$$${possible}\:{values}:\:\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6}…

Question-216105

Question Number 216105 by mr W last updated on 27/Jan/25 Answered by A5T last updated on 27/Jan/25 $$\mathrm{x}^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \Rightarrow\mathrm{x}^{\mathrm{2}} =\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{2}\underset{−}…