Menu Close

Old-question-related-to-greatest-int-function-lim-x-0-1-x-1-1-1-lim-x-0-1-x-




Question Number 2624 by prakash jain last updated on 23/Nov/15
Old question related to greatest int function.  lim_(x→0) ⌊1+x⌋=1  ⌊1⌋=1  lim_(x→0) ⌊1−x⌋=?
$$\mathrm{Old}\:\mathrm{question}\:\mathrm{related}\:\mathrm{to}\:\mathrm{greatest}\:\mathrm{int}\:\mathrm{function}. \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor\mathrm{1}+{x}\rfloor=\mathrm{1} \\ $$$$\lfloor\mathrm{1}\rfloor=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor\mathrm{1}−{x}\rfloor=? \\ $$
Answered by Filup last updated on 24/Nov/15
if ⌊a±b⌋=⌊a⌋±⌊b⌋:     for  (a, b)∈Z    lim_(x→0) ⌊1+x]=lim_(x→0) ⌊1⌋+lim_(x→0) ⌊x⌋  =1+lim_(x→0) ⌊x⌋=1+⌊0⌋=1    Similarly  lim_(x→0) ⌊1−x⌋=lim_(x→0) ⌊1⌋−lim_(x→0) ⌊x⌋  =1−⌊0⌋=1
$$\mathrm{if}\:\lfloor{a}\pm{b}\rfloor=\lfloor{a}\rfloor\pm\lfloor{b}\rfloor:\:\:\:\:\:\mathrm{for}\:\:\left({a},\:{b}\right)\in\mathbb{Z} \\ $$$$ \\ $$$$\left.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor\mathrm{1}+{x}\right]=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor\mathrm{1}\rfloor+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor{x}\rfloor \\ $$$$=\mathrm{1}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor{x}\rfloor=\mathrm{1}+\lfloor\mathrm{0}\rfloor=\mathrm{1} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{Similarly}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor\mathrm{1}−{x}\rfloor=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor\mathrm{1}\rfloor−\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor{x}\rfloor \\ $$$$=\mathrm{1}−\lfloor\mathrm{0}\rfloor=\mathrm{1} \\ $$
Commented by Yozzi last updated on 24/Nov/15
Let a=1.99,b=1.01  ⇒⌊1.99+1.01⌋=⌊3⌋=3≠⌊1.99⌋+⌊1.01⌋=1+1=2
$${Let}\:{a}=\mathrm{1}.\mathrm{99},{b}=\mathrm{1}.\mathrm{01} \\ $$$$\Rightarrow\lfloor\mathrm{1}.\mathrm{99}+\mathrm{1}.\mathrm{01}\rfloor=\lfloor\mathrm{3}\rfloor=\mathrm{3}\neq\lfloor\mathrm{1}.\mathrm{99}\rfloor+\lfloor\mathrm{1}.\mathrm{01}\rfloor=\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$$ \\ $$
Commented by Filup last updated on 24/Nov/15
Thanks for the proof!  Back to the drawing board!
$${T}\mathrm{hanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{proof}! \\ $$$${B}\mathrm{ack}\:\mathrm{to}\:\mathrm{the}\:\mathrm{drawing}\:\mathrm{board}! \\ $$
Commented by Filup last updated on 24/Nov/15
if  ⌊a±b⌋=⌊a⌋±⌊b⌋ for (a, b)∈Z  then my answer is true  I will edit my post!    if  a, b∈Z, ⌊a⌋=a, ⌊b⌋=b
$${if}\:\:\lfloor{a}\pm{b}\rfloor=\lfloor{a}\rfloor\pm\lfloor{b}\rfloor\:\mathrm{for}\:\left({a},\:{b}\right)\in\mathbb{Z} \\ $$$${then}\:{my}\:{answer}\:{is}\:{true} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{edit}\:\mathrm{my}\:\mathrm{post}! \\ $$$$ \\ $$$$\mathrm{if}\:\:{a},\:{b}\in\mathbb{Z},\:\lfloor{a}\rfloor={a},\:\lfloor{b}\rfloor={b} \\ $$
Answered by Yozzi last updated on 24/Nov/15
Let y=⌊1−x⌋. lim_(x→0^+ ) y=lim_(x→0^+ ) ⌊1−x⌋  For 0≤x<1, 0<1−x≤1⇒1−x is a   fraction or 1⇒⌊1−x⌋=0 or ⌊1−x⌋=1  ⇒lim_(x→0^+ ) ⌊1−x⌋ is undefined (cannot be sure to choose 1 or 0)  For −1<x≤0, 1≤1−x<2⇒⌊1−x⌋=1.  ∴lim_(x→0^− ) ⌊1−x⌋=1. lim_(x→0^− ) y≠lim_(x→0^+ ) y since lim_(x→0^+ ) y does not exist.  ⇒lim_(x→0) y does not exist. Graphically,  there is a jump discontinuity in  y=⌊1−x⌋ at x=0.
$${Let}\:{y}=\lfloor\mathrm{1}−{x}\rfloor.\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{y}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\lfloor\mathrm{1}−{x}\rfloor \\ $$$${For}\:\mathrm{0}\leqslant{x}<\mathrm{1},\:\mathrm{0}<\mathrm{1}−{x}\leqslant\mathrm{1}\Rightarrow\mathrm{1}−{x}\:{is}\:{a}\: \\ $$$${fraction}\:{or}\:\mathrm{1}\Rightarrow\lfloor\mathrm{1}−{x}\rfloor=\mathrm{0}\:{or}\:\lfloor\mathrm{1}−{x}\rfloor=\mathrm{1} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\lfloor\mathrm{1}−{x}\rfloor\:{is}\:{undefined}\:\left({cannot}\:{be}\:{sure}\:{to}\:{choose}\:\mathrm{1}\:{or}\:\mathrm{0}\right) \\ $$$${For}\:−\mathrm{1}<{x}\leqslant\mathrm{0},\:\mathrm{1}\leqslant\mathrm{1}−{x}<\mathrm{2}\Rightarrow\lfloor\mathrm{1}−{x}\rfloor=\mathrm{1}. \\ $$$$\therefore\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\lfloor\mathrm{1}−{x}\rfloor=\mathrm{1}.\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}{y}\neq\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{y}\:{since}\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{y}\:{does}\:{not}\:{exist}. \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{y}\:{does}\:{not}\:{exist}.\:{Graphically}, \\ $$$${there}\:{is}\:{a}\:{jump}\:{discontinuity}\:{in} \\ $$$${y}=\lfloor\mathrm{1}−{x}\rfloor\:{at}\:{x}=\mathrm{0}.\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *