Menu Close

Category: Vector

Determiner-et-construire-l-ensemble-des-points-M-tel-que-3MA-2-MB-2-MC-2-42-Le-plan-est-muni-d-un-repere-orthonorme-O-I-J-A-1-2-B-2-3-C-1-9-on-considere-que-O-barycentre-A-3-B-1-

Question Number 77296 by mathocean1 last updated on 05/Jan/20 $$\mathrm{Determiner}\:\mathrm{et}\:\mathrm{construire}\:\mathrm{l}.\mathrm{ensemble} \\ $$$$\mathrm{des}\:\mathrm{points}\:\mathrm{M}\:\mathrm{tel}\:\mathrm{que}: \\ $$$$\mathrm{3MA}^{\mathrm{2}} +\mathrm{MB}^{\mathrm{2}} −\mathrm{MC}^{\mathrm{2}} =−\mathrm{42} \\ $$$$\mathrm{Le}\:\mathrm{plan}\:\mathrm{est}\:\mathrm{muni}\:\mathrm{d}.\mathrm{un}\:\mathrm{repere}\: \\ $$$$\mathrm{orthonorme}\:\left(\mathrm{O},\mathrm{I},\mathrm{J}\right) \\ $$$$\mathrm{A}\left(\mathrm{1},\mathrm{2}\right)\:\:\:\mathrm{B}\left(−\mathrm{2},\mathrm{3}\right)\:\:\mathrm{C}\left(\mathrm{1},\mathrm{9}\right). \\ $$$$\mathrm{on}\:\mathrm{considere}\:\mathrm{que}\:…

Find-the-magnitude-of-two-forces-such-that-if-they-act-at-right-angle-their-resultant-is-10-and-13-if-they-act-at-an-angle-of-60-

Question Number 11405 by tawa last updated on 24/Mar/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{two}\:\mathrm{forces}\:\mathrm{such}\:\mathrm{that}\:\mathrm{if}\:\mathrm{they}\:\mathrm{act}\:\mathrm{at}\:\mathrm{right}\:\mathrm{angle}\:\mathrm{their} \\ $$$$\mathrm{resultant}\:\mathrm{is}\:\sqrt{\mathrm{10}}\:,\:\mathrm{and}\:\sqrt{\mathrm{13}}\:\mathrm{if}\:\mathrm{they}\:\mathrm{act}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{60}°.\: \\ $$ Answered by mrW1 last updated on 24/Mar/17 $${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{10} \\…

Find-the-workdone-in-moving-a-paticle-once-around-an-ellipse-C-in-the-xy-plane-if-the-ellipse-has-centre-at-the-origin-with-semi-major-and-semi-minor-axes-4-and-3-respectively-

Question Number 11351 by tawa last updated on 21/Mar/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{workdone}\:\mathrm{in}\:\mathrm{moving}\:\mathrm{a}\:\mathrm{paticle}\:\mathrm{once}\:\mathrm{around}\:\mathrm{an}\:\mathrm{ellipse}\:\mathrm{C}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{xy}\:\mathrm{plane}.\:\mathrm{if}\:\mathrm{the}\:\mathrm{ellipse}\:\mathrm{has}\:\mathrm{centre}\:\mathrm{at}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{with}\:\mathrm{semi}\:\mathrm{major}\:\mathrm{and}\:\mathrm{semi}\:\mathrm{minor}\:\mathrm{axes}\: \\ $$$$\mathrm{4}\:\mathrm{and}\:\mathrm{3}\:\mathrm{respectively}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-76855

Question Number 76855 by aliesam last updated on 31/Dec/19 Commented by aliesam last updated on 31/Dec/19 $${AB}={BC}=……={Fg}={GA} \\ $$$${prove}\:{that}\: \\ $$$${the}\:{area}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\pi−\mathrm{7}{tan}\left(\frac{\pi}{\mathrm{14}}\right)\right) \\ $$ Commented…

Question-76555

Question Number 76555 by aliesam last updated on 28/Dec/19 Answered by MJS last updated on 28/Dec/19 $$\mathrm{if}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are}\:\mathrm{located}\:\mathrm{on}\:\mathrm{the}\:\mathrm{same}\:\mathrm{lines} \\ $$$$\mathrm{blue}\:\mathrm{area}\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{a}^{\mathrm{2}} \\ $$$$\mathrm{red}\:\mathrm{area}\:=\:\frac{\pi}{\mathrm{6}}{b}^{\mathrm{2}} \\ $$$$\Rightarrow\:{b}=\frac{\sqrt[{\mathrm{4}}]{\mathrm{27}}}{\:\sqrt{\mathrm{2}\pi}}{a} \\ $$$$\mathrm{s}=\frac{\pi}{\mathrm{3}}{b}=\frac{\sqrt[{\mathrm{4}}]{\mathrm{27}}\sqrt{\mathrm{2}\pi}}{\mathrm{6}}{a}…

find-vector-unit-perpendicular-to-vector-a-1-2-3-and-b-1-0-2-

Question Number 76524 by john santu last updated on 28/Dec/19 $${find}\:{vector}\:{unit}\:{perpendicular}\: \\ $$$${to}\:{vector}\:\overset{−} {{a}}=\left(\mathrm{1},\mathrm{2},\mathrm{3}\right)\:{and}\:\overset{−} {{b}}=\left(−\mathrm{1},\mathrm{0},\mathrm{2}\right) \\ $$ Answered by MJS last updated on 28/Dec/19 $$\begin{vmatrix}{\mathrm{1}}&{−\mathrm{1}}&{{u}_{{x}}…

Question-76475

Question Number 76475 by aliesam last updated on 27/Dec/19 Answered by mr W last updated on 27/Dec/19 $${y}=\mathrm{85}−\mathrm{85}\left(\frac{{x}−\mathrm{70}}{\mathrm{70}}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${at}\:{x}=\mathrm{95}: \\ $$$${y}=\mathrm{85}−\mathrm{85}\left(\frac{\mathrm{95}−\mathrm{70}}{\mathrm{70}}\right)^{\mathrm{2}} =\mathrm{74}.\mathrm{16}\:{ft}…