Menu Close

Can-you-evaluate-S-i-k-n-n-C-i-




Question Number 3001 by Filup last updated on 02/Dec/15
Can you evaluate:  S=Σ_(i=k) ^n ^n C_i
$$\mathrm{Can}\:\mathrm{you}\:\mathrm{evaluate}: \\ $$$${S}=\underset{{i}={k}} {\overset{{n}} {\sum}}\:^{{n}} {C}_{{i}} \\ $$
Commented by Rasheed Soomro last updated on 02/Dec/15
S=Σ_(i=k) ^n ^n C_i       =^n C_k +^n C_(k+1) +^n C_(k+2) +...+^n C_n   =((n!)/(k!(n−k)!))+((n!)/((k+1)!(n−k−1)!))+((n!)/((k+2)!(n−k−2)!))+...+((n!)/(n!(n−n)!))
$${S}=\underset{{i}={k}} {\overset{{n}} {\sum}}\:^{{n}} {C}_{{i}} \\ $$$$\:\:\:\:=^{{n}} {C}_{{k}} +^{{n}} {C}_{{k}+\mathrm{1}} +^{{n}} {C}_{{k}+\mathrm{2}} +…+^{{n}} {C}_{{n}} \\ $$$$=\frac{{n}!}{{k}!\left({n}−{k}\right)!}+\frac{{n}!}{\left({k}+\mathrm{1}\right)!\left({n}−{k}−\mathrm{1}\right)!}+\frac{{n}!}{\left({k}+\mathrm{2}\right)!\left({n}−{k}−\mathrm{2}\right)!}+…+\frac{{n}!}{{n}!\left({n}−{n}\right)!} \\ $$
Answered by Yozzi last updated on 02/Dec/15
S=Σ_(i=k) ^n  ((n),(i) )    S=Σ_(i=0) ^n  ((n),(i) )−Σ_(i=0) ^(k−1)  ((n),(i) )  Now, (1+1)^n =Σ_(i=0) ^n  ((n),(i) ) 1^(n−i) 1^i   ∴ Σ_(i=0) ^n  ((n),(i) )=2^n    ∴ S=2^n −Σ_(i=0) ^(k−1)  ((n),(i) )  k≤n⇒k−1≤n−1.  There is then the possibility that   Σ_(i=0) ^(k−1)  ((n),(i) )=Σ_(i=0) ^(n−1)  ((n),(i) )=Σ_(i=0) ^n  ((n),(i) )− ((n),(n) )=2^n −1  or Σ_(i=0) ^(k−1)  ((n),(i) )=Σ_(i=0) ^(n−2)  ((n),(i) )=2^n − ((n),(n) )− ((n),((n−1)) )=2^n −1−n  orΣ_(i=0) ^(k−1)  ((n),(i) )=Σ_(i=0) ^(n−2)  ((n),(i) )=2^n −1−n−((n(n−1))/(2!))  or.... down to when k=1.
$${S}=\underset{{i}={k}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}\:\: \\ $$$${S}=\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}−\underset{{i}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix} \\ $$$${Now},\:\left(\mathrm{1}+\mathrm{1}\right)^{{n}} =\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}\:\mathrm{1}^{{n}−{i}} \mathrm{1}^{{i}} \\ $$$$\therefore\:\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}=\mathrm{2}^{{n}} \: \\ $$$$\therefore\:{S}=\mathrm{2}^{{n}} −\underset{{i}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix} \\ $$$${k}\leqslant{n}\Rightarrow{k}−\mathrm{1}\leqslant{n}−\mathrm{1}. \\ $$$${There}\:{is}\:{then}\:{the}\:{possibility}\:{that}\: \\ $$$$\underset{{i}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}=\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}=\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}−\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}=\mathrm{2}^{{n}} −\mathrm{1} \\ $$$${or}\:\underset{{i}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}=\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{2}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}=\mathrm{2}^{{n}} −\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}−\begin{pmatrix}{{n}}\\{{n}−\mathrm{1}}\end{pmatrix}=\mathrm{2}^{{n}} −\mathrm{1}−{n} \\ $$$${or}\underset{{i}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}=\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{2}} {\sum}}\begin{pmatrix}{{n}}\\{{i}}\end{pmatrix}=\mathrm{2}^{{n}} −\mathrm{1}−{n}−\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!} \\ $$$${or}….\:{down}\:{to}\:{when}\:{k}=\mathrm{1}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *