Menu Close

Author: Tinku Tara

What-is-nth-term-1-2-5-4-15-8-37-16-83-32-

Question Number 3003 by Rasheed Soomro last updated on 02/Dec/15 $${What}\:{is}\:{nth}\:{term}? \\ $$$$\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{5}}{\mathrm{4}},\frac{\mathrm{15}}{\mathrm{8}},\frac{\mathrm{37}}{\mathrm{16}},\frac{\mathrm{83}}{\mathrm{32}}… \\ $$ Commented by Rasheed Soomro last updated on 05/Dec/15 $$\underset{−} {\mathcal{HIGH}{ly}}\:\mathcal{A}{ppriciate}\:\mathcal{Y}{our}\:\overset{\mathcal{VALUEABLE}}…

Question-68537

Question Number 68537 by naka3546 last updated on 13/Sep/19 Answered by MJS last updated on 13/Sep/19 $$\mathrm{1}\:\mathrm{8}\:\mathrm{17} \\ $$$$\mathrm{4}\:\mathrm{7}\:\mathrm{17} \\ $$$$\mathrm{4}\:\mathrm{13}\:\mathrm{13} \\ $$$$\mathrm{7}\:\mathrm{7}\:\mathrm{16} \\ $$$$\mathrm{8}\:\mathrm{11}\:\mathrm{13}…

Given-a-b-and-c-are-real-numbers-and-a-lt-b-lt-c-If-1-a-1-b-1-c-1-18-find-minimum-value-of-a-

Question Number 134069 by john_santu last updated on 27/Feb/21 $${Given}\:{a},{b}\:{and}\:{c}\:{are}\:{real}\:{numbers}\:{and}\:{a}<{b}<{c}. \\ $$$${If}\:\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:=\:\frac{\mathrm{1}}{\mathrm{18}}\:,\:{find}\:{minimum}\:{value}\:{of}\:{a}. \\ $$ Commented by mr W last updated on 27/Feb/21 $${no}\:{minimum}\:{for}\:{a}\:{exists}. \\ $$…

Question-134064

Question Number 134064 by mr W last updated on 27/Feb/21 Commented by mr W last updated on 27/Feb/21 $${find}\:{the}\:{angle}\:\theta\:{at}\:{which}\:{the}\:{falling} \\ $$$${rod}\:{begins}\:{to}\:{slip}\:{on}\:{the}\:{ground}\:{if} \\ $$$${the}\:{friction}\:{coefficient}\:{between}\:{rod} \\ $$$${and}\:{ground}\:{is}\:\mu.…

Calculate-lim-n-k-2-n-k-3-1-k-3-1-

Question Number 134067 by bramlexs22 last updated on 27/Feb/21 $$\:\mathrm{Calculate}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{\mathrm{k}=\mathrm{2}} {\overset{\mathrm{n}} {\prod}}\:\frac{\mathrm{k}^{\mathrm{3}} −\mathrm{1}}{\mathrm{k}^{\mathrm{3}} +\mathrm{1}}\:=\:? \\ $$ Answered by john_santu last updated on 27/Feb/21 $$\:{since}\:\frac{{k}^{\mathrm{3}}…